Common genetic defect in prostate cancer inspires path to new anti-cancer drugs

January 09, 2020

(Philadelphia, PA) - Like security screening to make sure nothing harmful makes its way into a crowded area, cells in the human body use checkpoints to control their growth and prevent harmful mutations from making their way into new cell populations and causing trouble. Every cell that divides and replicates its DNA must clear at least three checkpoints - all of which call on specialized genes known as tumor suppressors.

Tumor suppressor genes encode proteins that work with other molecules in cells to put the brakes on cell division when DNA damage or other defects are detected. This process prevents mutations that harm cells or that lead to uncontrolled cell growth and cancer from being passed along to new cells. Fortunately, tumor suppressors are fairly robust. Under normal circumstances, they stop working only when mutations affect both of the tumor suppressor gene's alleles, which are the different forms of a gene inherited from each parent.

But in the case of prostate cancer, researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) and Fox Chase Cancer Center recently discovered an important exception to this two mutation rule. Working in human cells and animal models, they found that a mutation leading to the loss of just one allele of a tumor suppressor gene known as PPP2R2A is enough to make a tumor caused by other mutations worse.

In a study published in the journal Oncogenesis, the team, led by Xavier Graña, PhD, Professor of Medical Genetics and Molecular Biochemistry, and in the Fels Institute for Cancer Research and Molecular Biology at LKSOM, found that patients whose prostate tumors carry only one copy of PPP2R2A do not survive as long as those whose tumors have two copies of the gene. They also showed that in cells deficient in PPP2R2A, reconstitution of the PP2A protein encoded by the gene ultimately kills prostate cancer cells.

The study is the first to show that reactivating PP2A in affected cells can slow or stop the advance of prostate cancer in an animal model.

"The majority of prostate tumors have only one functional copy of the PPP2R2A gene," Dr. Graña explained. "Because this alteration occurs so frequently, many patients could benefit from treatments that restore the gene's activity."

Dr. Graña's team mapped out specifically what happens when cells lose a copy of PPP2R2A, and what happens when PP2A is reconstituted. When lost, they found that cells were more likely to divide and replicate, thereby generating more cells - a process that fuels cancer progression. This occurred because cells just breezed through the so-called mitotic checkpoint, which normally ensures that a cell's chromosomes are organized properly for cell division. PP2A reactivation, on the other hand, resulted in sustained activation of the mitotic checkpoint - to the point that the cellular machinery responsible for separating replicated chromosomes for division collapsed, killing the cells.

"Restoring PP2A to normal levels in these cancer cells caused a weakening of their centrosome, which is the organizer of the cell machinery in charge of faithfully separating chromosomes," Dr. Graña explained. "The combination of a sustained checkpoint and a weakened centrosome results in collapse of the mitotic apparatus, with chromosomes not knowing where they have to go."

"Our findings indicate that prostate tumors often kick off a copy of the PPP2R2A gene to facilitate their growth and that bringing PP2A levels back to normal results in abnormal chromosome sorting and cell death."

Small molecules that activate PP2A and that have the potential to be developed into drugs have already been identified. Whether they specifically activate PP2A in prostate cancer remains unclear, however.

"More work is needed to find a specific drug for this complex, but we have a promising start," Dr. Graña added.
Other researchers who contributed to the new study include Ziran Zhao, Alison Kurimchak, Felicity Feiser, Jason S. Wasserman, Holly Fowle, Tinsa Varughese, and Megan Connors, Fels Institute for Cancer Research and Molecular Biology, LKSOM; Anna S. Nikonova, Katherine Johnson, Petr Makhov, Vladimir M. Kolenko, Erica A. Golemis, and James S. Duncan, Fox Chase Cancer Center; and Cecilia Lindskog, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.

The research was supported in part by National Institutes of Health Grants R01 GM117437 and R03 CA216134-01.

About Temple Health

Temple University Health System (TUHS) is a $2.2 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH); TUH-Episcopal Campus; TUH-Northeastern Campus; The Hospital of Fox Chase Cancer Center and Affiliates, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices; and Temple Faculty Practice Plan, Inc., TUHS's physician practice plan comprised of more than 500 full-time and part-time academic physicians in 20 clinical departments. TUHS is affiliated with the Lewis Katz School of Medicine at Temple University.

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System (TUHS) and by the Katz School of Medicine. TUHS neither provides nor controls the provision of health care. All health care is provided by its member organizations or independent health care providers affiliated with TUHS member organizations. Each TUHS member organization is owned and operated pursuant to its governing documents.

It is the policy of Temple University Health System that there shall be no exclusion from, or participation in, and no one denied the benefits of, the delivery of quality medical care on the basis of race, ethnicity, religion, sexual orientation, gender, gender identity/expression, disability, age, ancestry, color, national origin, physical ability, level of education, or source of payment.

Temple University Health System

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to