Nav: Home

Preparing for the hydrogen economy

January 09, 2020

In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels. When hydrogen moves into steel, it makes the metal become brittle, leading to catastrophic failures. This has been one of the major challenges in moving towards a greener, hydrogen-fuelled future, where steel tanks and pipelines are essential components that must be able to survive in pure hydrogen environments.

Published in Science, the researchers found hydrogen accumulates at microstructures called dislocations and at the boundaries between the individual crystals that make up the steel.

This accumulation weakens the steel along these features, leading to embrittlement.

The researchers also found the first direct evidence that clusters of niobium carbide within the steel trap hydrogen in such a way that it cannot readily move to the dislocations and crystal boundaries to cause embrittlement. This effect has the potential to be used to design steels that can resist embrittlement.

Lead researcher Dr Yi-Sheng Chen from the Australian Centre for Microscopy and Microanalysis and Faculty of Engineering at the University of Sydney said these findings were an important step to finding a safe solution to produce, store and transport hydrogen.

"These findings are vital for designing embrittlement-resistant steel; the carbides offer a solution to ensuring high-strength steels are not prone to early fracture and reduced toughness in the presence of hydrogen," Dr Chen said.

Senior author Professor Julie Cairney from the Australian Centre for Microscopy and Microanalysis and Faculty of Engineering at the University of Sydney said these findings were a positive step towards implementing clean fuels.

"Hydrogen is a low carbon fuel source that could potentially replace fossil fuels. But there are challenges with the use of steel, the world's most important engineering material, to safely store and transport it. This research gives us key insights into how we might be able to improve this situation," Professor Cairney said.

Working in partnership with CITIC Metal, the researchers were able to directly observe hydrogen at microstructures in steels thanks to Microscopy Australia's state-of-the-art custom-designed cryogenic atom probe microscope.
-end-


University of Sydney

Related Hydrogen Articles:

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.