Construction of carbon-based cell-like-spheres for robust potassium anode

January 09, 2021

With the rapid development of smart portable electronics and electric vehicles, the consumption of lithium resource will increase dramatically and the cost of lithium-ion batteries (LIBs) may increase significantly in the future. In addition, the shortage (0.0017 wt% in the earth's crust) and uneven crustal distribution of lithium also limit its further development and application. As potassium (2.7 wt% in the earth's crust) have properties similar to lithium and abundant reserves. Therefore, as an alternative to LIBs, potassium ion batteries (PIBs) have become the focus of research. Potassium (2.92 V vs. standard hydrogen electrode) has a standard electrode potential closer to Li (3.04 V vs. SHE) than the standard electrode potential of Na (2.71 V vs. SHE), Mg (2.37 V vs. SHE) and Al (1.66 V vs. SHE). This means that PIBs may provide a higher energy density and working voltage. Consequently, it is of great significance to explore excellent electrode materials and study their potassium storage mechanism.

Over billions of years, biological cells evolved effectively by natural selection and resulted in the creation of a variety of organisms, and cells such as human cells that can be regarded as perfect small systems. The structure of such cells is complex yet delicate with various well-coordinated structural components; for example, the cell membrane provides access to biomaterials and can discharge metabolic waste in a timely manner. Here we propose and demonstrate that such evolution-selected cells have important implications in the synthesis of battery materials.

In a new research article published in the Beijing-based National Science Review, scientists at Hunan University, Central South University and Clemson University present a biomimetic carbon cells (BCCs) for robust potassium anode. Biomimetic carbon cells (BCCs) are composed of carbon sheets with high degree of graphitization and carbon nanotubes. Carbon nanotubes connect the inside and outside of carbon cells, providing a large number of ion channels. A large number of ion channels increase the diffusion path of ions and increase the transmission rate. The internal space possessed by the BCC provides a buffer for the volume change caused by the insertion of potassium ions into the graphite, carbon shell of the cell-like membrane can protect and support the internal materials and the overall structure, which greatly improves the cyclic stability of PIBs. The BCC-based electrodes demonstrated a superior cycling stability with a stable reversible capacity of 226 mAh g-1 after 2100 cycles at a current density of 500 mA g-1 and continuous running time of more than 15 months at a current density of 100 mA g-1. The present strategy provides a new way for the design and manufacture of new biomimetic battery materials in the future, and promotes collaborative research across multiple disciplines.

"Scientifically, we combine the biological field and the material synthesis field (biomimetic structure), and report the performance and stability of the synthesized carbon material as a potassium ion battery anode." Prof. Bingan Lu said, "In a broader perspective, the study represents a new strategy for boosting the battery performance, and could pave the way for the next generation battery-powered applications."
See the article:

Hongbo Ding, Jiang Zhou, Apparao M. Rao and Bingan Lu
Cell-like-carbon-micro-spheres for robust potassium anode
National Science Review, nwaa276, DOI: 10.1093/nsr/nwaa276

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to