Oxygen to the core

January 10, 2013

LIVERMORE, Calif. -- An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing condition's than previously proposed.

Through of series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demonstrated that the depletion of siderophile (also known as "iron loving") elements can be produced by core formation under more oxidizing conditions than earlier predictions.

"We found that planet accretion (growth) under oxidizing conditions is similar to those of the most common meteorites," said LLNL geophysicist Rick Ryerson.

The research appears in the Jan. 10 edition of Science Express.

While scientists know that the Earth accreted from some mixture of meteoritic material, there is no simple way to quantify precisely the proportions of these various materials. The new research defines how various materials may have been distributed and transported in the early solar system.

As core formation and accretion are closely linked, constraining the process of core formation allows researchers to place limits on the range of materials that formed our planet, and determine whether the composition of those materials changed with time. (Was accretion heterogeneous or homogeneous?)

"A model in which a relatively oxidized Earth is progressively reduced by oxygen transfer to the core-forming metal is capable of reconciling both the need for light elements in the core and the concentration of siderophile elements in the silicate mantle, and suggests that oxygen is an important constituent in the core," Ryerson said.

The experiments demonstrated that a slight reduction of such siderphile elements as vanadium (V) and chromium (Cr) and moderate depletion of nickel (Ni) and cobalt (Co) can be produced during core formation, allowing for oxygen to play a more prominent role.

Planetary core formation is one of the final stages of the dust-to-meteorite-to-planet formation continuum. Meteorites are the raw materials for planetary formation and core formation is a process that leads to chemical differentiation of the planet. But meteorite formation and core formation are very different processes, driven by different heat sources and occurring in very different pressure and temperature ranges.

"Our ability to match the siderophile element signature under more oxidizing conditions allows us to accrete the Earth from more common, oxidized meteoritic materials, such as carbonaceous and ordinary chondrites," Ryerson said.

The earth's magnetic field is generated in the core, and protects the Earth from the solar wind and associated erosion of the atmosphere. While the inner core of the Earth is solid, the outer core is still liquid. The ability to preserve a liquid outer core and the associated magnetic field are dependent on the composition of the core and the concentration of light elements that may reduce the melting temperature.

"By characterizing the chemical interactions that accompany separation of core-forming melts from the silicate magma ocean, we can hope to provide additional constraints on the nature of light elements in the present-day core and its melting/freezing behavior," Ryerson said.
Other teams members include Julien Siebert and Daniele Antonangeli (former LLNL postdocs) from the Université Pierre et Marie Curie and James Badro (a faculty scholar at LLNL) from the Institut de Physique du Globe de Paris.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.