Dual-purpose biofuel crops could extend production, increase profits

January 10, 2017

Today many biofuel refineries operate for only seven months each year, turning freshly harvested crops into ethanol and biodiesel. When supplies run out, biorefineries shut down for the other five months. However, according to recent research, dual-purpose biofuel crops could produce both ethanol and biodiesel for nine months of the year--increasing profits by as much as 30%.

"Currently, sugarcane and sweet sorghum produce sugar that may be converted to ethanol," said co-lead author Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. "Our goal is to alter the plants' metabolism so that it converts this sugar in the stem to oil--raising the levels in current cultivars from 0.05% oil, not enough to convert to biodiesel, to the theoretical maximum of 20% oil. With 20% oil, the plant's sugar stores used for ethanol production would be replaced with more valuable and energy dense oil used to produce biodiesel or jet fuel."

A paper published in Industrial Biotechnology simulated the profitability of Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS) with 0%, 5%, 10%, and 20% oil. They found that growing sorghum in addition to sugarcane could keep biorefineries running for an additional two months, increasing production and revenue by 20-30%.

Today, PETROSS sugarcane produces 13% oil by dry weight, 8% of which is the kind of oil used to make biodiesel. At 20% oil, sugarcane would produce 13 times more oil--and six times more profit--per acre than soybeans.

A biorefinery plant processing PETROSS sugarcane with 20% oil would have a 24% international rate of return--a metric used to measure the profitability of potential investments--which increases to 29% when PETROSS sorghum with 20% oil is processed for an additional two months during the sugarcane offseason.

"When a sugarcane plant has to shut down, the company is still paying for capital utilization; they have spent millions of dollars on equipment that isn't used for five months," said co-lead author Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory at Illinois. "We propose bringing in another crop, sweet sorghum, to put that equipment to use and decrease capital utilization costs."

By decreasing capital utilization costs, the cost to produce ethanol and biodiesel drops by several cents per liter. Processing lipid-sorghum during the lipid-cane off-season increased annual biofuel production by 20 to 30%, thereby increasing total revenue without any additional investment in equipment.

The simulations in this paper accounted for the equipment required to retrofit ethanol plants to produce biodiesel. In the U.S., about 90 percent of ethanol plants are already retrofitted to produce biodiesel. According to Singh, in places like Brazil where they produce a large amount of sugarcane, it makes sense to retrofit ethanol plants. "Our study shows that it is cost effective to do it."
For more information about opportunities to collaborate or invest in this work, contact Vijay Singh at vsingh@illinois.edu or 217-333-9510.

The paper "Techno-Economic Analysis of Biodiesel and Ethanol Production from Lipid-Producing Sugarcane and Sweet Sorghum" was published by Industrial Biotechnology (doi:10.1089/ind.2016.0013). Co-authors include: Haibo Huang, Virginia Polytechnic Institute and State University, and Tom Clemente, University of Nebraska.

This work and PETROSS are currently funded by the U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), which supports initial research for high-impact energy technologies to show proof of concept before private-sector investment. Learn more about PETROSS at http://petross.illinois.edu/.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.