Study finds body size of marine plankton, currents keys to dispersal in ocean

January 10, 2018

CORVALLIS, Ore. - When it comes to marine plankton, the smaller you are the farther you travel.

A new international study found that the size of plankton, and the strength and direction of currents, are key to how they are dispersed in the ocean - much more so than physical conditions including differences in temperature, salinity and nutrient availability.

Results of the study are being published this week in Nature Communications.

"Organisms are constantly looking for a niche in which they can survive and there are pros and cons to being small," said James Watson, an Oregon State University oceanographer and co-author on the study. "When you're small, you are more abundant and you ride the currents further, which means you have more opportunities to find a good spatial niche.

"The down side is that when you're small, you get beat up a lot. You get eaten by bigger organisms. There are advantages to being small and fast, but there also are advantages to being big and strong."

The question of how plankton and other small marine organisms are distributed in the ocean is important, scientists say, because climate change is rapidly warming marine waters all over the globe and it isn't yet clear how this will affect biological communities.

This new study found that the complex network of ocean currents is a key to how organisms disperse, and the size of the organisms plays an important role in how far they disperse. The larger the plankton body size, the smaller the connection between distant communities, said lead author Ernesto Villarino, a researcher with AZTI, a marine technology center in Spain.

"The ocean is the largest continuous environment on Earth, and over long time scales, all marine ecosystems are connected by ocean currents," Villarino said. "Biological connectivity, or the exchange of individuals across geographically separated sub-populations is not uniform, as there are barriers that hinder their dispersal."

The study included scientists from the United States, Spain, Sweden, the United Kingdom and Saudi Arabia. It was funded largely by the Malaspina 2010 Circumnavigation Expedition.

Much of the data was collected during that expedition, then comprehensive modeling led by Oregon State's Watson helped the researchers analyze the spatial distribution of the organisms.

In their study, the researchers looked at different plankton, fungi, algae and other micro-organisms up to fish larvae "about the size of your pinkie fingernail," Watson said.

"The big question is what will happen as the oceans warm," Watson said. "There are already very warm regions in the ocean and we are beginning to find out which organisms in these areas are more heat-tolerant. In theory, those will begin to populate other regions as they also warm.

"However, our results suggest that will more likely happen if there is clear connectivity via ocean currents, and the smaller organisms are more likely to travel farther and faster."
-end-
Watson is on the faculty of Oregon State's College of Earth, Ocean, and Atmospheric Sciences.

Oregon State University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.