Frogs reveal mechanism that determines viability of hybrids

January 10, 2018

When two related species crossbreed, their genetic material crosses, which can lead to new species. But every so often there is a difference in the offspring, depending on which of the two species is the mother and which one is the father. A well-known example of a hybrid is a mule, the offspring of a male donkey and a female horse. The other way around, the offspring of a female donkey and a male horse is a different animal: a hinny. It thus makes a difference which species is the father and which one is the mother.

One hybrid is viable, the other hybrid is not

Both mules and hinnies are infertile, because donkeys and horses have a different number of chromosomes, the protein structures on which genetic material is present. Yeasts, plants, fish and amphibians (in contrast to mammals) can however produce fertile hybrids. Professor of Molecular Developmental Biology Gert Jan Veenstra: "For instance, in frogs a duplication of chromosomes can appear, in which the whole set of chromosomes from the father and the mother are passed on to the next generation." However, there is another problem: some hybrids are not viable, while the crossbreeding the other way around is. The embryos are genetically identical, but there is a difference in viability, depending on the father species and the mother species. Veenstra: "Even though it is vital for evolution, the mechanisms of viable and non-viable hybrids are to this date unknown."

Crossbreeding the African and Western clawed frog

The scientists showed this phenomenon in research with two related frog species: Xenopus tropicalis and Xenopus laevis (also known as the Western and African clawed frogs, respectively). When a female African clawed frog is crossbred with a male Western clawed frog, the embryos are viable. However, the other way around, crossbreeding a male African clawed frog and a female Western clawed frog leads to embryos that die in the early stages of development. Why that is, remained unclear.

Not viable due to dysfunctional separation of paternal chromosomes

On 10 January, researchers publish what went wrong during this crossbreeding: the maternal molecular machinery of the Western clawed frog cannot fully recognize the paternal chromosomes of the African clawed frog. Two specific pieces of the paternal chromosomes are incompatible with the maternal cell and thus the separation of the chromosomes during cell division is disrupted. These cells now lack a large number of important genes, such as genes for metabolism, and therefore quickly die.

This shows there is a strong asymmetry when it comes to hybrids, depending on the father species and mother species. "These findings are important, because these type of hybrids are present in nature and in some cases lead to new species. When new species are formed, there seems to be a period of transition: closely related species are able to produce viable offspring, but if the chromosomes are no longer compatible it leads to asymmetric results of crossbreeding. When species further separate, crossbreeding no longer leads to viable offspring. We here show the cellular mechanism behind this phenomenon," states Gert Jan Veenstra.

Viable hybrid also reveals molecular mechanism

The viable hybrid of a male Western clawed frog and a female African clawed frog also revealed a molecular mechanism: parasitic DNA elements (transposons) are activated in one of the genomes. Veenstra: "The female's immune system is not wired to recognize the paternal transposons and hence does not repress them. As a consequence, parasitic DNA elements are now able to fulfill a new role: they can act as regulatory DNA that influences gene activity. This may have a large influence on formation and characteristics of a new species." These findings were published in Genome Biology (Elurbe et al, 2017).

Radboud University Nijmegen

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to