Nav: Home

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018

BIRMINGHAM, Ala. - Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery from heart attack injury.

The results are a step closer to the goal of treating human heart attacks by suturing cardiac-muscle patches over an area of dead heart muscle in order to reduce the pathology that often leads to heart failure.

The research was led by Jianyi "Jay" Zhang, M.D., Ph.D., the chair of University of Alabama at Birmingham Biomedical Engineering, a joint department of the UAB School of Medicine and the UAB School of Engineering.

Each patch is 1.57 by 0.79 inches in size and nearly as thick as a dime. Zhang and colleagues found that transplanting two of these patches onto the infarcted area of a pig heart significantly improved function of the heart's left ventricle, the major pumping chamber. The patches also significantly reduced infarct size, which is the area of dead muscle; heart-muscle wall stress and heart-muscle enlargement; as well as significantly reducing apoptosis, or programmed cell death, in the scar boarder area around the dead heart muscle. Furthermore, the patches did not induce arrhythmia in the hearts, a serious complication observed in some past biomedical engineering approaches to treat heart attacks.

A key to success of the patches is how they are engineered.

Each patch is a mixture of three cell types -- 4 million cardiomyocytes, or heart-muscle cells; 2 million endothelial cells, which are well-known to help cardiomyocytes survive and function in a micro-environment; and 2 million smooth muscle cells, which line blood vessels. The three cell types were differentiated from cardiac-lineage, human induced pluripotent stem cells, or hiPSCs, rather than using hiPSCs created from skin cells or other cell types.

Each patch was grown in a three-dimensional fibrin matrix that was rocked back and forth for a week. The cells begin to beat synchronously after one day.

This mixture of three cell types and the dynamic rocking produced more heart muscle cells that were more mature, with superior heart-muscle physiological function and contractive force, as compared with patches made from a monolayer of cells that are not dynamically rocked. The patches resembled native heart-muscle tissue in their physiological and contractile properties.

Past attempts to use hiPSCs to treat animal models of heart attacks -- using an injection of cells or cells grown as a very thin film -- have shown very low rates of survival, or engraftment, by the hiPSCs. The present study had a relatively high rate of engraftment, 10.9 percent, four weeks after transplantation, and the transplantation led to improved heart recovery.

Part of the beneficial effects of the patches may occur through the release of tiny blebs called exosomes from cells in the patches. These exosomes, which carry proteins and RNA from one cell to another, are a common cell-to-cell signaling method that is incompletely understood. In tissue culture experiments, the researchers found that exosomes released from the large heart-muscle patches appeared to protect the survival of heart-muscle cells.

Additionally, the patches appeared to prevent or reverse detrimental changes in protein phosphorylation in the sarcomeres of the heart-muscle tissue bordering the infarcted area of the heart. This result is the first to suggest that hiPSC-derived heart cells may improve contractile function after heart attacks by lessening maladaptive changes in phosphorylation states of sarcomeric proteins. The sarcomere is the contractile unit in a heart-muscle cell myofibril.
-end-
Co-authors with Zhang of the paper, "Large cardiac-muscle patches engineered from human induced-pluripotent stem-cell-derived cardiac cells improve recovery from myocardial infarction in swine," published in the journal Circulation, are Ling Gao, Ph.D., Wuqiang Zhu, M.D., Ph.D., Saidulu Mattapally, Ph.D., Yasin Oduk, Ph.D., Xi Lou, Ramaswamy Kannappan, Ph.D., Anton V. Borovjagin, Ph.D., Gregory P. Walcott, Ph.D., Andrew E. Pollard, Ph.D., Vladimir G. Fast, Ph.D., and Steven G. Lloyd, M.D., Ph.D., all of the UAB Department of Biomedical Engineering; Zachery R. Gregorich, Ph.D., and Ying Ge, Ph.D., Department of Cell and Regenerative Biology, University of Wisconsin-Madison; and Xinyang Hu, M.D., Ph.D., Zhejiang University, Hangzhou, China.

This work was supported by National Institutes of Health grants HL 99507, HL114120, HL131017, HL134764, HL128086 and HL109810; and by Shared Instrumentation Grant Program OD018475.

At UAB, Zhang holds the T. Michael and Gillian Goodrich Endowed Chair of Engineering Leadership.

University of Alabama at Birmingham

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

Mechanical Engineering Reference Manual for the PE Exam, 13th Ed
by Michael R. Lindeburg PE (Author)

Thermodynamics: An Engineering Approach
by Yunus A. Cengel Dr. (Author), Michael A. Boles (Author)

Basic Machines and How They Work
by Naval Education And Training Program (Author)

The Engineering Book: From the Catapult to the Curiosity Rover, 250 Milestones in the History of Engineering (Sterling Milestones)
by Marshall Brain (Author)

Mathematical Methods for Physics and Engineering: A Comprehensive Guide
by K. F. Riley (Author), M. P. Hobson (Author), S. J. Bence (Author)

Site Reliability Engineering: How Google Runs Production Systems
by Niall Richard Murphy (Author), Betsy Beyer (Author), Chris Jones (Author), Jennifer Petoff (Author)

Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

Social Engineering: The Science of Human Hacking
by Christopher Hadnagy (Author)

Chassis Engineering: Chassis Design, Building & Tuning for High Performance Handling
by Herb Adams (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...