Nav: Home

Danish malaria vaccine passes test in humans

January 10, 2019

For many years, a team of researchers at the University of Copenhagen have been focussing on developing a vaccine that can protect against the disease pregnancy malaria from which 220,000 people die every year.

Now they have come a significant step closer to being able to introduce such a vaccine in the market. In a new study published in the scientific journal Clinical Infectious Diseases the vaccine has been subjected to so-called phase one clinical trial, and the results are uplifting: The vaccine is safe to use, and it passes the test by inducing the right antibody response in the blood.

'It is a great milestone for us to be able to show that our vaccine is completely safe and induces the exact antibody response in the blood we want. Because it is the immune response that has been shown to be connected with protection from pregnancy malaria. The next step is to document that it prevents pregnancy malaria in African women who would otherwise have contracted the disease', says main author of the study, Associate Professor Morten Agertoug Nielsen from the Department of Immunology and Microbiology.

Safety First

The researchers have applied the normal method for testing new drugs by doing a so-called randomised, double-blind study. This means that the test subjects were randomly given the vaccine and placebo, respectively, and neither the subjects nor the researchers performing the study knew who got what.

The effect of the vaccine was examined among 36 German women and men who had volunteered for the trial. After injecting the test subjects with the vaccine, the researchers were able to detect the right immune response with antibodies against the malaria parasite in the blood, and the subjects showed no serious side effects.

The German test subjects are described as 'malaria naïve', because they are not and will not be exposed to the malaria parasite and therefore will never develop pregnancy malaria. They were nevertheless used as test subjects to document that the vaccine is safe and appears to work, before it is introduced in a group of African women vulnerable and at risk of developing pregnancy malaria.

'Of course we will be doing more tests, because we want to take the vaccine as far as we can. We are therefore cooperating with hospitals in Benin in Africa, where we can conduct studies in women in risk of developing the disease. We expect to be able to publish the results of these studies sometime next year', says co-author of the study, Professor Ali Salanti from the Department of Immunology and Microbiology.

Cooperation Ensures Medicine for People in Need

The researchers' journey towards a malaria vaccine began with Ali Salanti's discovery of the protein hook in the placenta of pregnant women to which the malaria parasite may attach itself. Subsequently, Ali Salanti and his research team have been trying to utilise this knowledge to produce an actual vaccine against the fatal disease.

'Our development and production of the vaccine has only been possible due to our close public-private collaborations. It is a strong example of how such a constellation can make it possible to develop medicine for people in need, including people with few resources', says Professor Ali Salanti.

In academia, it is also unusual to see researchers take their discovery further to clinical trials. Clinical trials can be extensive and expensive, and therefore the pharmaceutical industry is typically the one developing and safety-testing drugs before introducing them in the market. But in this case the researchers have managed to do so themselves.

'The next step in the process is a phase two clinical trial, which will show whether the vaccine is still safe, but also whether it can prevent disease. Concurrently, we have developed a method for transforming the vaccine into a virus-like particle. This increases the antibody response. But the crux of the matter is whether it is sufficient for attacking all the different forms of the protein hook found in the malaria parasite', says Associate Professor Morten Agertoug Nielsen.
-end-
The University of Copenhagen owns the patent on the vaccine technology, but the researchers have also cooperated with a series of companies on realising the malaria vaccine. Among other things, the researchers have founded the spinout NextGen Vaccines Aps, which together with the private biotech company ExpreS2ion Biotechnologies Aps has formed the joint venture company AdaptVac Aps. They all work together on developing this type of vaccine. In addition, the researchers have cooperated with AGC Biologics (previously called CMC Biologics), who has been responsible for producing the active substance in the vaccine.

In this study, the researchers have also worked closely together with researchers at Tübingen University Hospital and the German Center for Infection Research.

The study is funded by the EU programme FP7-Health-2012-Innovation, the Danish National Advanced Technology Foundation, the Independent Research Fund Denmark, the German Federal Ministry of Education and Research the Bill & Melinda Gates Foundation.

University of Copenhagen The Faculty of Health and Medical Sciences

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Immune Response

Primer to the Immune Response
by Tak W. Mak (Author), Mary E. Saunders (Author), Bradley D. Jett (Author)

The Lyme Solution: A 5-Part Plan to Fight the Inflammatory Auto-Immune Response and Beat Lyme Disease
by Darin Ingels (Author), Amy Myers MD (Foreword)

Primer to The Immune Response
by Tak W. Mak (Author), Bradley D. Jett (Author), Mary E. Saunders (Author), Maya Rani Chaddah (Illustrator), Ellen Vitetta (Illustrator)

The Immune Response: Basic and Clinical Principles
by Tak W. Mak (Author), Mary E. Saunders (Author), Wendy Lynn Tamminen (Editor), Maya Rani Chaddah (Editor)

The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response
by Zlatko Dembic (Author)

Immune Responses to Biosurfaces: Mechanisms and Therapeutic Interventions (Advances in Experimental Medicine and Biology)
by John D. Lambris (Editor), Kristina N. Ekdahl (Editor), Daniel Ricklin (Editor), Bo Nilsson (Editor)

Primer to the Immune Response: Academic Cell Update Edition
by Tak W. Mak (Author), Mary E. Saunders (Author)

Immune Response to Parasitic Infections: Protozoa Volume 1
by Emilio Jirillo (Author)

Understanding the Host Immune Response Against Mycobacterium tuberculosis Infection
by Vishwanath Venketaraman (Editor)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.