Nav: Home

Application of nanosized LiFePO4 modified electrode to electrochemical sensor & biosensor

January 10, 2019

Electrochemical sensors and biosensors allow researchers to measure small quantities of chemicals or physico-chemical parameters in experimental settings. This is achieved with the use of sensitive electrodes which can detect small changes in electrical signals. Due to this sensitivity, they have diverse applications in engineering and medicine. Newer versions of sensors offer greater sensitivity and accuracy with the help of nanomaterials incorporated in electrodes used in the sensor.

Researchers led by Wei Sun at the College of Chemistry and Chemical Engineering, Hainan Normal University have tested electrodes modified with Lithium Iron Phosphate (LFP) for biochemical analysis or rutin (a citrus flavonoid) and hemoglobin. According to the researchers, LFP is a promising candidate to develop new modified electrodes owing to its advantages such a low cost, environmental compatibility, high safety, non-toxicity, long cycle life and abundance in the environment.

Sun's team employed scanning electron microscopy to distinguish nanosized LFP particles. The LFP modified electrodes were then prepared by casting the a solution of the particles over the surface of a Carbon Ionic Liquid Electrode (CILE) and adding drops of chitosan on the modified electrodes. Two separate electrodes were prepared for analyzing rutin and hemoglobin, respectively.

The team studied the electrochemical activity of rutin and hemoglobin with these nano-LFP electrodes and achieved detection limits of 8.0 nmol L-1 for rutin and, in the case of hemoglobin, 0.068 mmol L-1 for trichloroacetic acid reduction and 0.07 μmol L-1 for hydrogen peroxide reduction.
-end-
This article is Open Access. To obtain the article please visit http://www.eurekaselect.com/155154

Bentham Science Publishers

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.