Nav: Home

New biomarker links cancer progression to genome instability

January 10, 2019

Our DNA is under constant attack. The delicate molecule that contains our genetic information is extremely vulnerable to everything from environmental agents, such as radiation, to the chemicals in the air we breathe and the food we eat. Genome instability can lead to genetic disorders, chronic diseases and a predisposition to cancer.

A new Tel Aviv University study identifies elevated levels of a protein called ubiquilin-4 as a new biomarker for genome instability. The study finds that ubiquilin-4 takes part in defending the genome from DNA damage, but too much ubiquilin-4 is harmful. When the amount of ubiquilin-4 rises in tumor cells, the cells become more prone to genome instability, accelerating the tumor's progression and making it resistant to commonly used cancer treatments.

The study was led by Prof. Yossi Shiloh of the Department of Human Molecular Genetics and Biochemistry at TAU's Sackler School of Medicine, in close collaboration with Prof. Christian Reinhardt of University Hospital Cologne and University of Cologne. Research for the study was carried out in Tel Aviv by Dr. Ron Jachimowicz, now at the University Hospital of Cologne, and Dr. Yael Ziv and PhD student Bhavana Velpula, both of TAU. Dr. Dave Hoon of the John Wayne Cancer Institute in Santa Monica, CA, also contributed to the research. It was published on January 3, 2019, in Cell.

"This novel biomarker provides new, critical information about the tumor stage and grade, as well as the patient's chances of responding to treatment," says Prof. Shiloh. "Tumors with high levels of ubiquilin-4 may be more resistant to radiation and some chemotherapies than those with normal levels of this protein. But the good news is that they may also respond better to other types of cancer therapy. Obviously, this is vital information for clinicians and patients.

"The importance of maintaining genome stability and integrity has been demonstrated through the study of rare genetic disorders," Prof. Shiloh continues. "But genome stability has now become a public health issue. There are so many proteins involved in responding to DNA damage, and behind every protein is a different gene. There are infinite ways in which a gene can mutate. Various combinations of these mutations may lead to chronic diseases and a predisposition to cancer, premature aging and other conditions. Genome stability is everyone's problem."

According to the new research, the body's DNA damage response is key to maintaining genome stability in the face of the constant onslaught of damaging agents. The response is composed of a broad, fine-tuned signaling network involving a standing army of proteins fully dedicated to this mission, as well as reserve proteins recruited temporarily to help resolve genome integrity.

In 1995, the Shiloh lab discovered the gene encoding of one of the major sentries at the gate of genome stability -- the protein ataxia-telangiectasia mutated (ATM). The finding was met with great fanfare. It concluded a long effort to identify the gene mutated in a severe genome instability syndrome, ataxia-telangiectasia (A-T).

But ATM also plays a critical role in the body's DNA damage response, mobilizing an extensive signaling network in response to tears in the long DNA molecule. It causes subtle chemical modifications in many proteins, which temporarily render them reserve proteins and recruits them away from their regular duties to carry out damage control.

"We are constantly searching for new reserve proteins that respond to ATM's call," Prof. Shiloh says. "Our new study shows that, like many other proteins, ubiquilin-4 is modified by ATM, and for several hours it serves the ATM-governed system."

The researchers, in collaboration with Prof. Dagmar Wieczorek of the Institute of Human Genetics at Heinrich-Heine-University in Düsseldorf, also discovered that the deficiency of ubiquilin-4 alone can lead to yet another rare genome instability syndrome.

"We hope our findings will provide a new tool for tumor classification, prognosis and treatment design," Prof. Shiloh concludes. "The research highlights the broader implications of the importance of genome stability for our health."
-end-
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #43 in the world.

American Friends of Tel Aviv University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...