Nav: Home

Uncovering more options in cancer immunotherapy

January 10, 2019

To make it possible for cancer immunotherapy to help more people, think small.

Small molecules, that is.

A major class of cancer immunotherapy agents, known as checkpoint inhibitors, revive the activity of immune cells that cancer cells have lulled to sleep. Generally, these agents are antibodies: highly specific, yet bulky proteins that do not easily diffuse through the body.

If scientists want to boost immune cells' ability to kill cancer cells, then plenty of other tools - vast libraries of more traditional "small molecules"-- are potentially available. What they need is a way to sort through them, a platform for screening thousands of drugs.

This is what Emory researchers report in a new Cell Chemical Biology paper. They also demonstrate that a class of drugs called IAP antagonists, one of which is already in clinical trials, can promote immune activity against cancer cells in their system.

Although checkpoint inhibitors are now FDA-approved for several types of cancer, many patients do not benefit from them. Finding drugs that loosen other parts of the immune response could increase efficacy, especially for types of cancer against which checkpoint inhibitors are ineffective by themselves.

Lead author Haian Fu, PhD, chair of the Department of Pharmacology and Chemical Biology at Emory University School of Medicine, says that drug discovery efforts in cancer immunotherapy have mostly focused on regulatory molecules on the outside of cells, which antibodies can easily reach.

"This is a robust co-culture system that enables high throughput screening for cancer immunotherapy," Fu says. "There are many targets inside the cell. We want to shine a light on those intracellular targets."

Working with Fu, instructor Xiulei Mo, PhD and colleagues created a system that can test whether compounds enhance the ability of human immune cells to suppress cancer cell growth. They call it HTiP, for "High-Throughput Immunomodulator Phenotypic Screening Platform."

The HTiP system uses a mixture of human immune cells, combined with cancer cells carrying a known growth-driving mutation. The Emory researchers began with the well-known oncogene KRAS, and compared the effect of cancer cells (colon and lung cancer cell lines) with and without the KRAS mutation. The presence of the KRAS mutation was immunosuppressive, meaning that in the Emory system, the KRAS mutation provides resistance against immune cells killing the cancer cells.

Mo screened a library of about 2,000 known compounds, isolating the drug birinapant. It enhanced immune cell activity against the cancer cells, while doing little to the cancer cells on its own. Birinapant is part of a class of drugs called IAP antagonists, which are already being studied for anticancer activity.

"This was strong evidence for their relevance as immune enhancers," Fu says. "It was a timely validation of our system."

In fact, birinapant is being tested in combination with a checkpoint inhibitor. Two other IAP antagonists had similar effects in the same system, the researchers found.

The screening platform is agnostic to the mechanism of KRAS immunosuppression, or the precise type of immune cell. Fu notes that most checkpoint inhibitors appear to act on cytotoxic T cells, but the screening platform uses a combination of immune cell types.

"The effect in our system could come from any or all of those cell types," he says. "Adaptive or innate response."

All that is needed is for a compound to reverse the effect of the KRAS mutation. The system could be easily modified to test the effects of other oncogenic mutations, or to focus on one particular type of tumor antigen-specific immune cells, he says. The team also plans to expand its screening efforts, since 2,000 compounds is actually small, compared to the number of potential drugs.
-end-
Co-authors include Cong Tang, Qiankun Niu, PhD, Tingxuan Ma (an undergrad) and Yuhong Du, PhD

Du is associate professor of pharmacology and chemical biology at Emory University School of Medicine and associate director for assay development and high-throughput screening at the Emory Chemical Biology Discovery Center. Tang is a student in the Emory University--Xi'an Jiaotong University Health Science Center exchange program.

The research was supported by the National Cancer Institute (U01CA217875, U01CA199241, P30CA138292) the Georgia Cancer Coalition/Georgia Research Alliance and the Emory Chemical Biology Discovery Center.

Emory Health Sciences

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

The Emperor of All Maladies: A Biography of Cancer
by Siddhartha Mukherjee (Author)

The Truth about Cancer: What You Need to Know about Cancer's History, Treatment, and Prevention
by Ty M. Bollinger (Author)

Chris Beat Cancer: A Comprehensive Plan for Healing Naturally
by Chris Wark (Author)

The Cancer-Fighting Kitchen, Second Edition: Nourishing, Big-Flavor Recipes for Cancer Treatment and Recovery
by Rebecca Katz (Author), Mat Edelson (Author)

Anticancer: A New Way of Life
by David Servan-Schreiber MD PhD (Author)

F*ck Cancer: A totally inappropriate self-affirming adult coloring book (Totally Inappropriate Series) (Volume 4)
by Jen Meyers (Author)

The Breakthrough: Immunotherapy and the Race to Cure Cancer
by Charles Graeber (Author)

The Biology of Cancer, 2nd Edition
by Robert A. Weinberg (Author)

The Metabolic Approach to Cancer: Integrating Deep Nutrition, the Ketogenic Diet, and Nontoxic Bio-Individualized Therapies
by Dr. Nasha Winters ND FABNO L.Ac Dipl.OM (Author), Jess Higgins Kelley MNT (Author), Kelly Turner (Foreword)

Cancer: Step Outside the Box
by Ty M. Bollinger (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.