Nav: Home

Bizarre 'bristle-jaw' creatures finally placed on tree of life

January 10, 2019

Chaetognaths, whose name means "bristle-jaw," can be found all over world, swimming in brackish estuaries, tropical seas and above the deep dark ocean floor. Also known as arrow worms, the creatures have been around since the Cambrian Period, but their precise place in evolutionary history has long eluded scientists. Now, researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have learned where arrow worms wiggle on the Tree of Life, and their results could reveal important trends in the evolution of bilateral organisms.

The researchers sought to verify the relationship of the predatory arrow worm to other spiralia -- members of a diverse group of organisms, or clade, believed to share a common ancestor. The spiralian clade includes mollusks, segmented worms and flatworms. Strikingly, the scientists found that arrow worms don't belong with spiralians, but instead with a new group of animals that form a sister group to the clade. The results, published January 10, 2019 in Current Biology, challenge the classical view that complex organisms evolved from simple ancestors by gaining new traits over time.

"Arrow worms are predators, they have nervous systems, they have developed sensory organs. But the other organisms they're grouped with are much simpler," said Ferdinand Marlétaz, first author of the study and a postdoctoral scholar in the OIST Molecular Genetics Unit, led by Prof. Daniel Rokhsar. "If you place arrow worms here, it means there was probably a lot of independent simplification, rather than the independent emergence of complexity."

Though very different in appearance, arrow worms and their phylogenetic relatives, such as the microscopic animals known as rotifers, seem to share a unique jaw structure. Composed of dense protein matrix and a fibrous substance called chitin, these jaws are situated near the organisms' mouths and allow them to grasp their prey.

"Arrow worms group with a fairly obscure collection of small marine animals -- they're not animals most people are familiar with," said Prof. Daniel Rokhsar, senior author of the study and principal investigator of the research unit. "The fact that these different animals had jaws that were probably related to each other wasn't clear until this paper."

Arrow worms from around the world

The roughly 200 species of arrow worms resemble tiny spears and range from only one millimeter long to 12 centimeters in length. The predators mostly feast on small crustaceans called copepods, using their keen vibratory sense to hunt prey and swallow them whole. The weird worm-like creatures actually share many morphological and developmental traits with other organisms, which makes their evolutionary timeline difficult to trace.

"Different animals that share the same early development are often related to each other," said Rokhsar. One reason researchers have struggled to characterize arrow worms is that their early developmental patterns are ambiguous; they resemble patterns observed in two major groups of animals. "We really had no way of precisely classifying arrow worms one way or the other."

The two animal supergroups are known as deuterostomes and protostomes. Both sets of organisms have a single gut running through them, from their mouths to the other end. In early development, the deuterostome gut forms from the bottom up, while protostome gut formation starts at the mouth. Though arrow worms develop bottom-up like deuterostomes, they strongly resemble protostomes both morphologically and genetically.

To clear up this discrepancy, the researchers gathered data from 10 arrow worm species and compared it to publicly available data from other animals. They examined the species transcriptomes, which serve as a snapshot of all the genes being expressed in a given cell. The scientists originally plucked their sample arrow worms from the Atlantic Ocean, the Gullmarfjord in Sweden, the Amakusa in Japan and Marseille in France. Dr. Katja Peijnenburg from Amsterdam University, Dr. Taichiro Goto from Mie University, and Prof. Noriyuki Satoh of the OIST Marine Genomics Unit assisted Marlétaz in collecting and preparing the samples.

The comparison placed arrow worms solidly in the protostome superclade within a subgroup that includes microscopic organisms known as rotifers, gnathostomulids, and micrognathozoans. Other established subgroups were shuffled around as an unintended consequence of this grouping, meaning many relationships among protostomes are now under scrutiny.

"I was a little bit surprised," said Marlétaz. "We still don't fully understand this association with rotifers and the others. That will be the focus of future research."

Protostomes, past and future

The study improved on earlier work by collecting the new arrow worm data and comparing it to a representative sample of other members of the animal kingdom. The researchers also chose to focus on evolutionary lineages that had evolved relatively slowly, rather than quickly. Fast-evolving lineages tend to appear similar in analysis, even if they are barely related, so the researchers sought to avoid this bias.

Looking forward, Marlétaz hopes there will be more morphological studies of arrow worms, to connect the dots between the animals' phylogeny and their physical characteristics. For instance, the researchers don't yet know what genes give rise to the iconic "bristle jaw" of the Gnathifera clade, or what other specific feature might unite the group.

"We also need to look closer at the arrow worm genome," said Marlétaz. "Arrow worms have very original genomic features, so we want to understand that better in the context of their new phylogenetic position."

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.