Nav: Home

New CRISPR-Cas9 variants can respond to viral proteases

January 10, 2019

Using a technique called circular permutation, researchers at the University of California Berkeley have created a new suite of Cas9 variants called Cas9-CPs, which will simplify design of Cas9-fusion proteins for diverse applications beyond simple DNA cutting, such as base editing and epigenetic modifications. The work appears January 10 in the journal Cell.

Through the same process, the researchers turned "always-on" Cas9 molecules into activatable switches that remain in the "off" position until activated by enzymes called proteases. The resulting protease-sensing Cas9s (ProCas9s) could reduce off-target effects and enable molecular sensing, as well as tissue- or organ-specific genome editing. The researchers demonstrated that ProCas9s can be used to detect viral proteases, potentially serving as a pathogen-sensing system capable of triggering an immune response.

"We're not stuck with what nature gave us with regards to genome-editing proteins," says senior author David Savage, a biochemist at the University of California, Berkeley. "These proteins can be elaborately optimized and turned into scaffolds possessing the right properties for use in human cells."

CRISPR-Cas proteins such as Cas9 are enzymes that protect bacteria from invading viruses. This bacterial defense system has been repurposed for genome-editing applications, such as inactivating genes, in a variety of cell types and organisms. Cas9 evolved to be a bacterial defense system, and it doesn't necessarily possess desired properties for genome editing in mammalian cells, such as extreme accuracy and precision in genome targeting, or the ability to control the spatial and temporal activity of the enzyme.

While Cas9 fusion proteins have been constructed to efficiently edit nucleotides in DNA, or activate or repress transcription through epigenetic modifications - changes that affect gene activity without altering the DNA sequence - each new application requires an in-depth engineering approach with laborious optimization. Another major hurdle is that Cas9 is always in the "on" position. This lack of control over the protein's activity makes it difficult to target specific cells or tissues, can result in unintentional genome editing and greater off-target genome damage, and prevents the use of Cas9 as a molecular recorder of cellular events.

To overcome these obstacles, Savage and his team used circular permutation to reengineer the molecular sequence of Cas9, thereby achieving better control over its activity and creating a more optimal DNA-binding scaffold for fusion proteins. This Cas9-rewiring approach involves connecting the ends of the protein, i.e., its N- and C-termini, with a peptide linker, while concurrently splitting its sequence at a different position to create new, adjacent N- and C- termini.

The researchers found that Cas9 is highly malleable to circular permutation. Several regions of the protein possess hotspots that can be opened at numerous positions to generate a diversity of Cas9-CPs, which could serve as scaffolds for advanced fusion proteins. Currently, the N- and C- termini of Cas9 are fixed, and they are not ideally placed for fusion proteins to gain access to DNA. By contrast, the termini of the new protein scaffolds are placed closer to the DNA-interacting interface of the protein, and are optimized for the efficient construction of fusion proteins.

The researchers next generated ProCas9s by engineering the peptide linker, making the linker short enough to constrict the protein into an inactive state, and then introducing sequences that could be cleaved by matching viral proteases. These ProCas9s were then tuned to serve as altruistic defense systems that could detect and respond to pathogens, generating massive DNA damage and killing infected cells when they were activated through cleavage of the linker peptide.

"I can envision various biomedical applications where the Cas9-CPs and ProCas9s will allow us to better understand disease processes and also enable safer translational applications of CRISPR-Cas genome editing and modification," says co-first author Christof Fellmann of the University of California, Berkeley.

In future studies, the researchers will work on developing Cas9-fusion proteins for base editing and epigenetic modifications. In addition, they plan to test whether ProCas9s can be used to build an entire synthetic immune system. It may also be possible to develop ProCas9s that are sensitive to endogenous proteases to target specific cells, for example, to edit the genomes of cancerous cells. "Our ProCas9 system is useful in any instance where having control of Cas9 would be useful," Savage says.
-end-
The authors were supported by the Innovative Genomic Institute entrepreneurial fellowship program, an NIH Pathway to Independence Award from the National Institute of General Medical Sciences, a Simons Foundation Fellowship, the Howard Hughes Medical Institute, and a U.S. NIH New Innovator Award from the National Institute of Biomedical Imaging and Bioengineering.

Cell, Oakes and Fellmann et al.: "CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification" https://www.cell.com/cell/fulltext/S0092-8674(18)31583-6

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)

Blueprint: How DNA Makes Us Who We Are (The MIT Press)
by Robert Plomin (Author)

Advanced Topics in Forensic DNA Typing: Methodology
by John M. Butler (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Fundamentals of Forensic DNA Typing
by John M. Butler (Author)

DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg Freyer (Author)

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.