Nav: Home

A new way to measure solar panel degradation

January 10, 2019

WASHINGTON, D.C., January 10, 2018 -- Despite many benefits and relative popularity as a renewable energy source, eventually, the sun does set on even the best solar panels. Over time, solar cells face damage from weather, temperature changes, soiling, and UV exposure. Solar cells also require inspections to maintain cell performance levels and reduce economic losses.

So, how does one inspect panels in real time, in a way that is both cost-effective and time-efficient? Parveen Bhola, a research scholar at India's Thapar Institute of Engineering and Technology, and Saurabh Bhardwaj, an associate professor at the same institution, spent the last few years developing and improving statistical and machine learning-based alternatives to enable real-time inspection of solar panels. Their research found a new application for clustering-based computation, which uses past meteorological data to compute performance ratios and degradation rates. This method also allows for off-site inspection.

Clustering-based computation is advantageous for this problem because of its ability to speed up the inspection process, preventing further damage and hastening repairs, by using a performance ratio based on meteorological parameters that include temperature, pressure, wind speed, humidity, sunshine hours, solar power, and even the day of the year. The parameters are easily acquired and assessed, and can be measured from remote locations.

Improving PV cell inspection systems could help inspectors troubleshoot more efficiently and potentially forecast and control for future difficulties. Clustering-based computation is likely to shed light on new ways to manage solar energy systems, optimizing PV yields, and inspiring future technological advancements in the field.

"The majority of the techniques available calculate the degradation of PV (photovoltaic) systems by physical inspection on site. This process is time-consuming, costly, and cannot be used for the real-time analysis of degradation," Bhola said. "The proposed model estimates the degradation in terms of performance ratio in real time."

Bhola and Bhardwaj worked together before and developed the model to estimate solar radiation using a combination of the Hidden Markov Model and the Generalized Fuzzy Model.

The Hidden Markov Model is used to model randomly changing systems with unobserved, or hidden states; the Generalized Fuzzy Model attempts to use imprecise information in its modeling process. These models involve recognition, classification, clustering, and information retrieval, and are useful for adapting PV system inspection methods.

The benefits of real-time PV inspection go beyond time-sensitive and cost-efficient measures. This new, proposed method can also improve current solar power forecasting models. Bhola noted that the output power of a solar panel, or set of solar panels, could be forecasted with even greater accuracy. Real-time estimation and inspection also allows for real-time rapid response.

"As a result of real-time estimation, the preventative action can be taken instantly if the output is not per the expected value," Bhola said. "This information is helpful to fine-tune the solar power forecasting models. So, the output power can be forecasted with increased accuracy."
The article, "Clustering-based computation of degradation rate for photovoltaic systems," is authored by Parveen Bhola and Saurabh Bhardwaj. The article will appear in the Journal of Renewable and Sustainable Energy Tuesday, Jan. 8, 2018 (DOI: 10.1063/1.5042688). After that date, it can be accessed at


The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. See

American Institute of Physics

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.