Nav: Home

Mothers use sex pheromones to veil eggs, preventing cannibalism

January 10, 2019

Species that lay eggs but don't actively keep watch over them often protect their precious eggs from predators by laying them in communal groups or by fortifying them with toxins. However, protecting these eggs from being devoured by their own kind is a completely different game; the catch is that any anti-cannibalistic strategy needs to be an effective deterrent while remaining nontoxic to the cannibals. In a new study published in the open-access journal PLOS Biology on January 10, Sunitha Narasimha, Roshan Vijendravarma and colleagues report how fruit flies (Drosophila melanogaster), which lay eggs communally, use chemical deception to protect their eggs from being cannibalized by their own larvae.

Using a multidisciplinary approach, Dr. Roshan Vijendravarma from the Department of Ecology and Evolution, University of Lausanne, Switzerland (currently at Institut Curie, Paris, France) and his team of international collaborators teased apart the chemical, sensory, genetic and mechanistic basis of deception using the Drosophila model system.

The team was intrigued by the observation that fruit fly larvae, despite their predatory nature, seldom attacked eggs in their vicinity even when deprived of food. While testing for various plausible defense mechanisms, the researchers found that the extremely thin wax layer within the egg shell acts as a protective barrier that prevents cannibalism.

Using high-resolution mass spectrometry to identify the specific molecules involved, the team discovered that the wax layer is composed of a bouquet of sex pheromones originating from both parents, and then nailed the protective effect on a female chemical called 7,11-heptacosadiene (7,11-HD); this pheromone, normally used to spice up the adult flies' mating, was incorporated into the egg's wax layer by the mother.

It was already known that the adults need a gene called ppk23 for detecting the 7,11-HD pheromone during mating, so the authors looked to see whether the ppk23 gene played an analogous role in the larvae. They found that the gene was indeed involved in detection of this pheromone in larvae "a different developmental life-stage" but modulates an entirely different behavioral outcome.

Finally, this nontoxic pheromone had an interesting property whereby a coating of 7,11-HD could mask the identity of underlying substances from larvae - even yeast, normally irresistible to fly larvae. In the egg, these maternal hydrocarbons incorporated within the wax layer leak-proofed the egg to prevent desiccation, and by doing so additionally serve as a mask that conceals the egg's identity from cannibal larvae.

Deception as a defense strategy against predation has evolved independently in diverse species. However, partly owing to our human bias for visual perception, studies on deception have largely focused on vision-based strategies and less on those that dupe the other senses. The team's findings suggest that chemical deception might be common across the tree of life, especially when predators rely on chemical cues to forage. Furthermore, since studies on animal deception have rarely used powerful model systems like the fruit fly, this study demonstrates how doing so potentially opens the way for research on the sensory, neural, genetic, and mechanistic basis of deception. The in-depth understanding of such strategies is crucial, especially to the fields of conservation, epidemiology, and pest management.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006012

Citation: Narasimha S, Nagornov KO, Menin L, Mucciolo A, Rohwedder A, Humbel BM, et al. (2019) Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism. PLoS Biol 17(1): e2006012. https://doi.org/10.1371/journal.pbio.2006012

Funding: Swiss National Science Foundation Grant (grant number 31003A_143939). received by Prof. T.J. Kawecki, supported S.N. and R.K.V. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. European Research Council Starting Grant (grant number 280271). recieved by Y.O.T. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. European Research Council PoC Grant (grant number 768565). recieved by Y.O.T. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Deutsche Forschungsgemeinschaft (grant number TH1584/1-1 and TH1584/3-1). received by A.S.T. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Baden Württemberg Stiftung and Zukunftskolleg of the University of Konstanz (grant number). recieved by A.S.T. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Swiss National Science Foundation R'Equip Grant (grant number 316030_128692). recieved by B.M.H. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Fruit Flies Articles:

New clues emerge about how fruit flies navigate their world
Janelia Research Campus scientists have uncovered new clues about how fruit flies keep track of where they are in the world.
Frisky female fruit flies become more aggressive towards each other after sex
Female fruit flies start headbutting each other after mating, becoming significantly more aggressive and intolerant Oxford University research has revealed.
What obese fruit flies may tell us about the evolution of cold tolerance
Researchers have hypothesized that migrations into higher, colder latitudes may lead to evolution of fast-burning metabolisms that keep cells warm in chilly conditions.
Fruit flies halt reproduction during infection
A protective mechanism that allows fruit flies to lay fewer eggs in response to bacterial infection is explained in a study published in the journal eLife.
Matching up fruit flies, mushroom toxins and human health
Some fruit flies build up tolerance to the toxin alpha-amanitin; the genetic mechanisms behind this adaptation link to an important metabolic pathway.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
When it comes to mating, fruit flies can make rational choices
In a paper published Jan. 17 in the journal Nature Communications, University of Washington researchers report that fruit flies -- perhaps the most widely studied insect in history -- show signs of rational decision-making when choosing a mate.
New study refutes how fruit flies developed their tolerance for alcohol
Scientists from the University of Chicago, the University of Nebraska-Lincoln and the University of Wisconsin-Madison conducted experiments investigating whether a molecular change in an enzyme gave the Drosophila melanogaster fruit fly species its superior ability to metabolize alcohol.
Scientists 'plug in' to circuitry behind sex in male fruit flies
Researchers from the University of Oxford have identified a small neural circuit in male fruit flies that has evolved to allow them to perform the complex mating ritual.
Fruit flies: Food, camera, action!
Fruit flies deprived of specific essential nutrients alter their food choices -- and even the way they search for food.

Related Fruit Flies Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...