Nav: Home

Viral production is not essential for deaths caused by food-borne pathogen

January 10, 2019

The replication of a bacterial virus is not necessary to cause lethal disease in a mouse model of a food-borne pathogen called Enterohemorrhagic Escherichia coli (EHEC), according to a study published January 10 in the open-access journal PLOS Pathogens by Sowmya Balasubramanian, John Leong and Marcia Osburne of Tufts University School of Medicine, and colleagues. The surprising findings could lead to the development of novel strategies for the treatment of EHEC and life-threatening kidney-related complications in children.

EHEC is a Shiga toxin-producing pathogen associated with serious disease outbreaks worldwide, including more than 390 food-poisoning outbreaks in the U.S. in the last two decades. Humans acquire EHEC by ingesting contaminated food or water, or through contact with animals or their environment. Infection may progress to life-threatening hemolytic uremic syndrome (HUS), the leading cause of kidney failure in children. Treatment for EHEC or HUS remains elusive, as antibiotics have been shown to exacerbate disease. The bacteria begin to produce Shiga toxin when a virus present in the EHEC genome is induced to leave its dormant state and begin to replicate, a process promoted by many antibiotics. Until now, it was generally believed that extensive virus replication was necessary for the bacteria to produce sufficient toxin to cause disease.

Using an EHEC disease mouse model, the authors show that an inducing signal needed to begin viral replication is essential for lethal disease. But surprisingly, sufficient Shiga toxin was produced to cause lethal mouse disease, even without viral replication. According to John Leong, one of the authors, "An important next step will be to learn what parts of the viral life cycle occur in human patients, and whether there are ways to prevent those aspects that lead to disease".
-end-


PLOS

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...