Malnutrition linked with increased risk of Zika birth defects

January 10, 2020

Congenital Zika Syndrome (CZS) refers to a collection of developmental malformations associated with Zika virus (ZIKV) congenital infection. This syndrome includes devastating conditions that have a huge impact on the rest of the life of the individual and their family, such as smaller (microcephaly) and unfolded (lissencephalic) brains, retinal abnormalities, enlarged ventricles of the heart, a lack of the inter-hemispheric connections and calcifications in the brain.

Brazil has been widely affected by ZIKV, but ~75% of CZS have been found in the socio-economically disadvantaged region of the Northeast.

In a new study, researchers from the University of Oxford and the Federal University of Rio de Janeiro have found that this rise in cases of CZS is linked to poor diet among the infants' mothers.

Professor Zoltán Molnár of the University of Oxford's Department of Physiology, Anatomy & Genetics, who participated in the study and has a long-term collaboration with the lead author Associate Professor Patricia Garcez of the Federal University of Rio de Janeiro Brazil partially supported by the Medical Research Council and Royal Society, said: 'We knew that areas of Brazil with the lowest socioeconomic status had the highest level of developmental impairment in babies due to CZS, which is why we looked at the possible link between ZIKV and one of the potentially most important co-factors, nutrition.

'This study showed that developmental impairment caused by ZIKV congenital infection is made much worse by environmental co-factors, specifically diets poor in protein, which explains why the devastating effects of CZS vary across ZIKV endemic regions.'

The link between Zika virus infection and the CZS has been demonstrated in previous studies, which helped researchers understand how the infection affected brain growth and development of blood vessels. These showed that ZIKV infects the cells that develop into the brain and alter genes and proteins related to the normal cell cycle and blood vessel development.

The current study also used a mouse model to replicate the effects of Zika infection in mice that had a low-protein diet, and found that several of the pathological signs found in humans appeared in the undernourished mice in a similar way.

Professor Molnár added: 'When we replicated the effects seen in humans who had poor diets in mice we saw similar effects in the foetuses, such as placental damage as well as poor embryonic body growth and a reduction in brain size of newborns born to undernourished pregnant mouse.

'The mouse mothers were clearly less able to fight against ZIKV, which was shown by a robust and persistent ZIKV infection in the spleens of undernourished mothers, in contrast to healthy mice. Our undernourished mouse model helped us to identify the cellular mechanisms that are responsible for the differences in humans.'

'Improving diet alone will not protect against ZIKV infections, but it can determine the severity of the CZS.

'While we need more work to translate these findings to human disease, our mouse model helped us to identify significant differences in the regulation patterns of key molecular pathways, and particular genes identified within developing brains reflect how a poor nutritional status increases the adverse effects of ZIKV infection.'

The study was partially funded by a joint MRC Grant between Professor Zoltán Molnár of the University of Oxford and Associate Professor Patricia Garcez of the Federal University of Rio de Janeiro.
-end-
Notes to editors

Congenital Zika Syndrome is associated with Maternal Protein Malnutrition - Sciences Advances AAAS

For further information, please contact: Chris McIntyre in the University of Oxford press office at christopher.mcintyre@admin.ox.ac.uk or on +44 (0)1865 270 046

Oxford University's Medical Sciences Division is one of the largest biomedical research centres in Europe, with over 2,500 people involved in research and more than 2,800 students. The University is rated the best in the world for medicine and life sciences, and it is home to the UK's top-ranked medical school. It has one of the largest clinical study portfolios in the UK and great expertise in taking discoveries from the lab into the clinic. Partnerships with the local NHS Trusts enable patients to benefit from close links between medical research and healthcare delivery.

University of Oxford

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.