Nav: Home

Shocked meteorites provide clues to Earth's lower mantle

January 10, 2020

Deep below the Earth's surface lies a thick rocky layer called the mantle, which makes up the majority of our planet's volume. While Earth's mantle is too deep for humans to observe directly, certain meteorites can provide clues to this unreachable layer.

In a study recently published in Science Advances, an international team of scientists, including Sang-Heon Dan Shim and Thomas Sharp of Arizona State University (ASU), have completed a complex analysis of a "shocked meteorite" (one that has experienced high-pressure and high-temperature conditions through impact events) and gained new insight into Earth's lower mantle.

Suizhou: a shocked meteorite

Shocked meteorites have provided many examples of deep mantle minerals since 1969 when high-pressure mineral Ringwoodite was discovered.

For this study, lead author Luca Bindi of the University of Florence (Italy), Shim and Sharp of ASU's School of Earth and Space Exploration and Xiande Xie of the Guangzhou Institute of Geochemistry (China), focused their efforts on a sample of a shocked meteorite called Suizhou.

"Suizhou was an ideal meteorite for our team to analyze," explains Shim, who specializes in using high-pressure experiments to study Earth's mantle. "It provided our team with samples of natural high-pressure minerals like those believed to make up the Earth's deep mantle."

Suizhou fell in 1986 in the Hubei province in China. Immediately after the fall of this meteorite, a group of scientists were able to find and collect samples. "It was an observed fall," explains Sharp, who specializes in studying shocked meteorites to understand shock and impact in the solar system. "So it did not suffer any chemical weathering on Earth and therefore there is no alteration of the iron.

Bridgmanite: The dominant material in the lower mantle

The Suizhou meteorite sample the researchers used for this study contains a specific silicate called "bridgmanite." This silicate is considered the dominant material in the Earth's lower mantle and makes up about 38 volume percent of our planet. It was first discovered in the shocked meteorite Tenham in 2014.

While it was previously thought that iron metal mainly existed in Earth's core, about 15 years ago scientists discovered in the lab that iron in bridgmanite can undergo self-oxidation from which it can produce metallic iron.

This process, a chemical reaction called "charge disproportionation," is where atoms re-distribute electrons among themselves and produce two or three cation forms with different oxidation states (in this case, some Fe(II) ions in bridgmanite convert to Fe(III) and Fe(0), the latter of which forms metallic iron).

The question remained, however, if this process could actually occur in nature.

Using high-resolution electron microscope imaging and spectroscopy, the researchers were able to conduct a set of complex analyses of the Suizhou meteorite sample in nanometer scale.

Through these analyses, the research team discovered metallic iron nanoparticles coexisting with bridgmanite in the shocked meteorite sample, representing the first direct evidence in nature of the iron disproportionation reaction, which so far had only been observed in high-pressure experiments.

"This discovery demonstrates that charge disproportionation can occur in natural high-pressure environments and therefore in the deep interior of the Earth," says Shim.

The implications of this study, however, go beyond just this discovery, and may ultimately help us understand the greater question of how Earth itself was oxidized.

While we know that Earth's upper mantle is more oxidizing than other planets and that the more oxidizing conditions of the upper mantle may be linked to the sudden rise of oxygen in the atmosphere 2.5 billion years ago, we don't yet know how the upper mantle of the Earth became more oxidizing.

"It is possible that when materials of the lower mantle are transported to the upper mantle by convection, there would be a loss of metallic iron and the oxidized iron in bridgmanite would cause more oxidizing conditions in the upper mantle," says Shim.

"Our discovery provides a possible explanation for the more oxidizing conditions of the Earth's upper mantle and supports the idea that deep interior processes may have contributed to the great oxygenation event on the surface."
-end-


Arizona State University

Related Meteorite Articles:

Ancient meteorite site on Earth could reveal new clues about Mars' past
Scientists have devised new analytical tools to break down the enigmatic history of Mars' atmosphere -- and whether life was once possible there.
First research results on the 'spectacular meteorite fall' of Flensburg
A fireball in the sky, accompanied by a bang, amazed hundreds of eyewitnesses in northern Germany in mid-September last year.
Meteorite contains the oldest material on Earth: 7-billion-year-old stardust
Scientists have discovered the oldest solid material on Earth: 7-billion-year-old stardust trapped inside a meteorite.
Meteorite-loving microorganism
The archaeon Metallosphaera sedula can uptake and process extraterrestrial material.
Cosmic pearls: Fossil clams in Florida contain evidence of ancient meteorite
Researchers picking through the contents of fossil clams from a Sarasota County quarry found dozens of tiny glass beads, likely the calling cards of an ancient meteorite.
Modeling early meteorite impacts on the moon
A detailed reconstruction of meteorite impacts resolves a longstanding problem and gives new insight into how the moon formed.
Site of biggest ever meteorite collision in the UK discovered
Scientists believe they have discovered the site of the biggest meteorite impact ever to hit the British Isles.
Oldest meteorite collection on Earth found in one of the driest places
Earth is bombarded every year by rocky debris, but the rate of incoming meteorites can change over time.
Cometary surprise found inside meteorite
An ancient sliver of the building blocks from which comets formed was discovered by a Carnegie-led research team encased inside a meteorite like an insect in amber.
Tiny fragment of a comet found inside a meteorite
ASU researcher helps team make surprising discovery that gives clues to how solar system formed
More Meteorite News and Meteorite Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.