Metabolic potential and molecular diversity of natural products from microorganisms

January 10, 2021

Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms

Announcing a new publication for Marine Life Science & Technology journal. In this review article the authors Xiao-Yue Peng, Jin-Tao Wu, Chang?Lun Shao, Zhi-Yong Li, Min Chen and Chang-Yun Wang from the Ocean University of China, Qingdao, China, Yangzhou University, Yangzhou, China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China and Shanghai Jiao Tong University, Shanghai, China consider the metabolic potential and molecular diversity of natural products from microorganisms.

Microbial secondary metabolites have long been considered as potential sources of lead compounds for medicinal use due to their rich chemical diversity and extensive biological activities. However, many biosynthetic gene clusters remain silent under traditional laboratory culture conditions, resulting in repeated isolation of a large number of known compounds. Co-culture strategy simulates the complex ecological environment of microbial life by using an ecology-driven method to activate silent gene clusters of microorganisms and tap their metabolic potential to obtain novel bioactive secondary metabolites.

In this article the authors review representative studies from 2017 to 2020 on the discovery of novel bioactive natural products from co-cultured microorganisms. A series of natural products with diverse and novel structures have been discovered successfully by co-culture strategies, including fungus-fungus, fungus-bacterium, and bacterium-bacterium co-culture approaches. These novel compounds exhibited various bioactivities including extensive antimicrobial activities and potential cytotoxic activities, especially when it came to disparate marine-derived species and cross-species of marine strains and terrestrial strains.

The authors conclude that co-culture can be an effective strategy to tap the metabolic potential of microorganisms, particularly for marine-derived species, thus providing diverse molecules for the discovery of lead compounds and drug candidates.
-end-
Article reference: Xiao-Yue Peng, Jin-Tao Wu, Chang-Lun Shao, Zhi-Yong Li, Min Chen and Chang-Yun Wang, Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms, Marine Life Science & Technology, 2020, ISSN 2662-1746, https://doi.org/10.1007/s42995-020-00077-5

Keywords: Co-culture, Microorganisms, Secondary metabolites, Chemical diversity

Marine Life Science & Technology (MLST) provides a platform that introduces new discoveries and theories associated with marine organisms, bioresources, and biotechnology. The journal is intended for marine scientists, biological oceanographers, conservation biologists, marine technologists, policy makers and legislators. Accordingly, we publish original research papers across a broad range of marine life sciences and technologies with an emphasis on synergistic interactions of multiple disciplines. Both theoretical and practical papers are welcome, including laboratory and field experimental studies relevant to marine life science and technology. Focused reviews, viewpoints, comments, and short communications are also accepted. As the journal's aim is to foster multidisciplinary approaches to marine sciences, authors are encouraged to emphasise the relevance of their work in relation across the journals key-disciplines.

For more information, please visit https://www.springer.com/journal/42995/

Editorial Board: https://www.springer.com/journal/42995/editors

MLST is available on SpringerLink (https://link.springer.com/journal/42995/volumes-and-issues).

Submissions to MLST may be made using ScholarOne ManuscriptsTM (https://mc03.manuscriptcentral.com/mlst).

Abstracted and indexed in:

Astrophysics Data System (ADS)
CNKI
Dimensions
EBSCO Discovery Service
Google Scholar
Institute of Scientific and Technical Information of China
Meta
Naver
OCLC WorldCat Discovery Service
ProQuest-ExLibris Primo
ProQuest-ExLibris Summon
TD Net Discovery Service

ISSN 2662-1746

Compuscript Ltd

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.