Nav: Home

Chemistry on the edge

January 11, 2017

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, a team of researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Hebrew University of Jerusalem in Israel confirmed with a unique infrared probe.

Experiments like this should help researchers to customize the structural properties of catalysts to make them more effective in fostering chemical reactions.

The study, published Jan. 11 in Nature, is an important step in chronicling how the atomic structure of nanoparticles impacts their function as catalysts in chemical reactions. Catalysts, which play a role in the production of many industrial products, such as fertilizers, fuel, and plastics, are materials that can speed up chemical reactions and make them more efficient while remaining unchanged in the process.

Scientists have known that materials can behave differently at the nanoscale than they do in larger quantities, and that customizing their size and shape can enhance their properties for specific uses. This new technique pinpointed the areas on single metallic particles -- which measure about 100 nanometers (100 billionths of a meter) -- are most active in chemical reactions.

Researchers combined a broad spectrum of infrared light, produced by Berkeley Lab's Advanced Light Source (ALS), with an atomic force microscope to reveal different levels of chemical reactivity at the edges of single platinum and gold nanoparticles compared to their smooth, flat surfaces.

They used a unique capability at ALS, dubbed SINS (for synchrotron-radiation-based infrared nanospectroscopy), to explore the detailed chemistry occurring on the surface of the particles, and achieved resolution down to 25 nanometers.

"It allows you to see all of this interplay in chemistry," said Michael Martin, a senior staff scientist in charge of infrared beamlines at the ALS. "That's what makes this special."

Hans Bechtel, a research scientist at Berkeley Lab who works at the ALS infrared beamlines, added, "You can simultaneously see reactants and the products formed in reactions."

In the experiment, researchers coated the metallic particles with a layer of reactive molecules and focused the ALS-produced infrared light onto the tiny tip (25 nanometers in its diameter) of the atomic force microscope.

The microscope's tip, when coupled with the highly focused infrared light, worked like an extremely sensitive antenna to map the surface structure of individual nanoparticles while also revealing their detailed surface chemistry.

"We were able to see the exact fingerprint of molecules on the surface of the particles and validate a well-known hypothesis in the field of catalysis," said Elad Gross, a faculty member at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, who led the study along with F. Dean Toste, a faculty scientist in the Chemical Sciences Division at Berkeley Lab and professor in UC Berkeley's Department of Chemistry.

Knowing the precise level of energy that's needed to trigger chemical reactions (the activation energy) is key in optimizing reactions, and can reduce costs at the industrial scale by conserving energy use.

"This technique has the ability to tell you not only where and when a reaction occurred, but also to determine the activation energy for the reaction at different sites," Gross said. "What you have here is a tool that can address fundamental questions in catalysis research. We showed that areas which are highly defective at the atomic level are more active than smooth surfaces."

This characteristic relates to the small size of the particles, Gross noted. "As the particle size is decreased, the structure is less uniform and you have more defects," he said.

Smaller particles have higher surface area per particle than larger particles, which means that more atoms will be located at the edges. Atoms at the edges of the particles have fewer neighbors than those along its smooth surfaces, and fewer neighbors means more freedom to participate in chemistry with other elements.

As the studied chemical reactions occur very rapidly--in less than a second--and the ALS technique can take about 20 minutes to scan a single spot on a particle, the researchers used a layer of chemically active molecules, which were attached to the surface of the particle, as markers for the catalytic reactivity.

The catalytic reaction in the study was analogous to what occurs in gasoline-powered vehicles' catalytic converters. Catalytic converters use platinum particles and other materials to convert car exhaust into less-toxic emissions.

Future experiments planned using the SINS technique will focus on documenting active chemical processes that use controlled flows of gases or liquids to trigger reactions, researchers said, and future experiments may use varying pressure and temperature to gauge effects.

"I think this is going to be a very interesting tool for further experiments and analyses that can answer a lot of questions that couldn't be answered before," Gross said. "This tool gives us the capability to get better resolution by three orders of magnitude than some other techniques, which has opened a very wide field for catalysis and surface-chemistry studies."

Future studies could also conceivably combine infrared- and X-ray-based methods at the ALS to gather richer chemical information, researchers said. There are already plans for a new infrared beamline at the ALS that will increase the capacity and capabilities for infrared chemical studies and also launch infrared-based 3-D structural studies at the ALS.
-end-
The ALS is a DOE Office of Science User Facility. This work was supported by the DOE Office of Basic Energy Sciences.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov .

DOE/Lawrence Berkeley National Laboratory

Related Chemical Reactions Articles:

Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Driving chemical reactions with light
How can chemical reactions be triggered by light, following the example of photosynthesis in nature?
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
Boosting solid state chemical reactions
Adding olefin enables efficient solvent-free cross-coupling reactions, leading to environmentally friendly syntheses of a wide range of organic materials.
Researchers monitor electron behavior during chemical reactions for the first time
In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction.
Physicists edge closer to controlling chemical reactions
A team of researchers has developed an algorithm for predicting the effect of an external electromagnetic field on the state of complex molecules.
Why a stream of plasma makes chemical reactions more efficient
A whiff of plasma, when combined with a nanosized catalyst, can cause chemical reactions to proceed faster, more selectively, at lower temperatures, or at lower voltages than without plasma.
Controlling chemical reactions near absolute zero
EPFL chemists have demonstrated complete experimental control over a chemical reaction just above absolute zero.
University of Toronto chemists advance ability to control chemical reactions
University of Toronto chemists led by Nobel Prize-winning researcher John Polanyi have found a way to select the outcome of chemical reaction by employing an elusive and long-sought factor known as the 'impact parameter' -- the miss-distance by which a reagent molecule misses a target molecule, thereby altering the products of chemical reaction.
Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.
More Chemical Reactions News and Chemical Reactions Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.