Nav: Home

Chemistry on the edge

January 11, 2017

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, a team of researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Hebrew University of Jerusalem in Israel confirmed with a unique infrared probe.

Experiments like this should help researchers to customize the structural properties of catalysts to make them more effective in fostering chemical reactions.

The study, published Jan. 11 in Nature, is an important step in chronicling how the atomic structure of nanoparticles impacts their function as catalysts in chemical reactions. Catalysts, which play a role in the production of many industrial products, such as fertilizers, fuel, and plastics, are materials that can speed up chemical reactions and make them more efficient while remaining unchanged in the process.

Scientists have known that materials can behave differently at the nanoscale than they do in larger quantities, and that customizing their size and shape can enhance their properties for specific uses. This new technique pinpointed the areas on single metallic particles -- which measure about 100 nanometers (100 billionths of a meter) -- are most active in chemical reactions.

Researchers combined a broad spectrum of infrared light, produced by Berkeley Lab's Advanced Light Source (ALS), with an atomic force microscope to reveal different levels of chemical reactivity at the edges of single platinum and gold nanoparticles compared to their smooth, flat surfaces.

They used a unique capability at ALS, dubbed SINS (for synchrotron-radiation-based infrared nanospectroscopy), to explore the detailed chemistry occurring on the surface of the particles, and achieved resolution down to 25 nanometers.

"It allows you to see all of this interplay in chemistry," said Michael Martin, a senior staff scientist in charge of infrared beamlines at the ALS. "That's what makes this special."

Hans Bechtel, a research scientist at Berkeley Lab who works at the ALS infrared beamlines, added, "You can simultaneously see reactants and the products formed in reactions."

In the experiment, researchers coated the metallic particles with a layer of reactive molecules and focused the ALS-produced infrared light onto the tiny tip (25 nanometers in its diameter) of the atomic force microscope.

The microscope's tip, when coupled with the highly focused infrared light, worked like an extremely sensitive antenna to map the surface structure of individual nanoparticles while also revealing their detailed surface chemistry.

"We were able to see the exact fingerprint of molecules on the surface of the particles and validate a well-known hypothesis in the field of catalysis," said Elad Gross, a faculty member at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, who led the study along with F. Dean Toste, a faculty scientist in the Chemical Sciences Division at Berkeley Lab and professor in UC Berkeley's Department of Chemistry.

Knowing the precise level of energy that's needed to trigger chemical reactions (the activation energy) is key in optimizing reactions, and can reduce costs at the industrial scale by conserving energy use.

"This technique has the ability to tell you not only where and when a reaction occurred, but also to determine the activation energy for the reaction at different sites," Gross said. "What you have here is a tool that can address fundamental questions in catalysis research. We showed that areas which are highly defective at the atomic level are more active than smooth surfaces."

This characteristic relates to the small size of the particles, Gross noted. "As the particle size is decreased, the structure is less uniform and you have more defects," he said.

Smaller particles have higher surface area per particle than larger particles, which means that more atoms will be located at the edges. Atoms at the edges of the particles have fewer neighbors than those along its smooth surfaces, and fewer neighbors means more freedom to participate in chemistry with other elements.

As the studied chemical reactions occur very rapidly--in less than a second--and the ALS technique can take about 20 minutes to scan a single spot on a particle, the researchers used a layer of chemically active molecules, which were attached to the surface of the particle, as markers for the catalytic reactivity.

The catalytic reaction in the study was analogous to what occurs in gasoline-powered vehicles' catalytic converters. Catalytic converters use platinum particles and other materials to convert car exhaust into less-toxic emissions.

Future experiments planned using the SINS technique will focus on documenting active chemical processes that use controlled flows of gases or liquids to trigger reactions, researchers said, and future experiments may use varying pressure and temperature to gauge effects.

"I think this is going to be a very interesting tool for further experiments and analyses that can answer a lot of questions that couldn't be answered before," Gross said. "This tool gives us the capability to get better resolution by three orders of magnitude than some other techniques, which has opened a very wide field for catalysis and surface-chemistry studies."

Future studies could also conceivably combine infrared- and X-ray-based methods at the ALS to gather richer chemical information, researchers said. There are already plans for a new infrared beamline at the ALS that will increase the capacity and capabilities for infrared chemical studies and also launch infrared-based 3-D structural studies at the ALS.
-end-
The ALS is a DOE Office of Science User Facility. This work was supported by the DOE Office of Basic Energy Sciences.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov .

DOE/Lawrence Berkeley National Laboratory

Related Chemical Reactions Articles:

Catalyst enables reactions with the help of green light
For the first time, chemists at the University of Bonn and Lehigh University in Bethlehem (USA) have developed a titanium catalyst that makes light usable for selective chemical reactions.
A new tool for controlling reactions in microrobots and microreactors
In a new paper, Thomas Russell and postdoctoral fellow Ganhua Xie, at the University of Massachusetts Amherst and Lawrence Berkeley National Laboratory, report that they have used capillary forces to develop a simple method for producing self-assembling hanging droplets of an aqueous polymer solution from the surface of a second aqueous polymer solution in well-ordered arrays.
First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.
Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.
Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.
Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
Mechanical force as a new way of starting chemical reactions
Researchers have shown mechanical force can start chemical reactions, making them cheaper, more broadly applicable, and more environmentally friendly than conventional methods.
Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.
Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Driving chemical reactions with light
How can chemical reactions be triggered by light, following the example of photosynthesis in nature?
More Chemical Reactions News and Chemical Reactions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.