Nav: Home

First look inside nanoscale catalysts shows 'defects' are useful

January 11, 2017

Using one of the world's brightest light sources to peer inside some of the world's smallest particles, scientists have confirmed a longstanding hypothesis: that atomic disorder or "defects" at the edges of nanoparticles is what makes them effective as chemical change agents.

The process by which a change agent, or catalyst, accelerates a chemical reaction is key to the creation of many materials essential to daily life, such as plastics, fuels and fertilizers. Known as catalysis, this process is a basic pillar of the chemical industry, making chemical reactions more efficient and less energy-demanding, and reducing or even eliminating the use and generation of hazardous substances.

Although catalysts have been used in industry for more than a century, scientists have yet to observe how their structure impacts their effectiveness as change agents. That's because catalysts are typically tiny metallic nanoparticles made of precious metals such as Platinum, Palladium or Rhenium. The extreme smallness that makes nanoparticles such effective catalysts also makes it hard to see how they work.

If scientists could peer inside individual nanoparticles' chemical reactions at a nanoscopic level, they would gather a treasure of useful knowledge for the design of improved catalysts to address the pressing energy needs of the 21st century.

That type of knowledge may now be close at hand, thanks to new research published January 11 in the journal Nature. In the new study -- led by Dr. Elad Gross from the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, and Prof. F. Dean Toste from the College of Chemistry at University of California, Berkeley, and Chemical Science Division at Lawrence Berkeley National Laboratory -- researchers directly observed for the first time how metallic nanoparticles, used as catalysts in numerous industrial processes, activate catalytic processes.

Using a light source one million times brighter than the sun, the researchers were able to observe chemical reactivity on single Platinum particles similar to those used as industrial catalysts. What they found is that chemical reactivity primarily occurs on the particles' periphery or edges, while lower reactivity occurs at the particles' center.

The different reactivity observed at the center and edges of Platinum particles corresponds to the different properties of the Platinum atoms in the two locations. The atoms are mostly flat at the center, while they're corrugated and less-ordered at the edges. This disorderly or "defective" structure means that Platinum atoms at the edges are not totally surrounded by other Platinum atoms, and will therefore form stronger interactions with reactant molecules. Stronger interactions can activate the reactant molecules and initiate a chemical reaction that will transform the reactant molecule into a desired product.

The research findings validate a well-known hypothesis in the world of catalysis, which correlates high catalytic reactivity with high density of atomic defects. It also shows, for the first time, that the enhanced reactivity of defected sites can be identified at the single-particle level.

"Our findings provide insights about the ways by which the atomic structure of catalysts controls their reactivity. This knowledge can direct the design of improved catalysts that will make chemical process greener, by decreasing the amount of energy that is consumed in the process and preventing the formation of unwanted, potentially hazardous, products," said Dr. Elad Gross, from the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

To peer into individual nanoparticles, researchers focused a bright infrared beam generated in a synchrotron source (Advanced Light Source, Lawrence Berkeley National Laboratory) into a thin probe with an apex diameter of 20 nanometers. The probe acts as an antenna, localizes the infra-red light in a specific range, and by that provides the capabilities to identify molecules which reside on the surface of the catalytic nanoparticles. By scanning the particles with the nanometric probe while it is being radiated by the infrared light, the researchers were able to identify the locations and conditions in which chemical reaction occurs on the surface of single particle.
-end-
The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en.

The Hebrew University of Jerusalem

Related Nanoparticles Articles:

Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
More Nanoparticles News and Nanoparticles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...