Nav: Home

Researchers map out genetic 'switches' behind human brain evolution

January 11, 2018

FINDINGS

UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors that govern the growth of our brains and, in some cases, set the stage for several brain disorders that appear later in life.

BACKGROUND

The human brain differs from that of mice and monkeys because of its large cerebral cortex. The organ's most highly developed part, the cerebral cortex is responsible for thinking, perceiving and sophisticated communication. Scientists are just beginning to understand the molecular and cellular mechanisms that drive the growth of the human brain and the major role they play in human cognition.

Brain development is guided by the expression of genes in certain brain regions or cell types, as well as during specific time frames. Gene expression, the process by which the instructions in our DNA are converted into a functional product, such as a protein, is regulated at many levels by segments of DNA acting as on-off switches at key moments. But until now, there was no map that described the activity and location of these switches on a chromosome during neurogenesis.

METHOD

Using a molecular biology technique called ATAC-seq, UCLA researchers mapped regions of the genome that are active during neurogenesis. They combined that data with gene expression data from those brain regions. The researchers also used previously published data about the folding patterns of chromosomes. Chromosomal folding patterns affect how genetic information is encoded. The combined data helped them identify regulatory elements for key genes in neurogenesis. One gene, called EOMES/Tbr2, when switched off, is associated with severe brain malformations.

The researchers confirmed the roles of the targeted genes by using CRISPR technology, a technique by which pieces of DNA in the cells can be removed, to edit out a subset of regulatory switches and then assess their effect on gene expression and neurogenesis.

IMPACT

Researchers found that some psychiatric disorders that develop later in life, such as schizophrenia, depression, ADHD and neuroticism, have their origins during the earliest stages of brain growth in the fetus. Even a person's future intellectual capabilities are set in motion during neurogenesis, researchers said.

Researchers also discovered a major mechanism that accounts for the human cerebral cortex being larger than it is in non-human primates. They identified a genome sequence that alters expression of a fibroblast growth factor receptor that regulates important biological processes including cell multiplication and division, and that assigns specific tasks to cells. The genome sequence is more active in humans than in mouse and non-human primates, which helps explain why human brains are larger.

AUTHORS

The study's first author is Luis de la Torre-Ubieta of UCLA and the senior author is Dr. Daniel Geschwind of UCLA. The other authors are Jason Stein, Hyejung Won, Carli Opland and Daning Lu, all of UCLA; and Dan Liang of the University of North Carolina, Chapel Hill.

JOURNAL

The study appears in the Jan. 11 Cell.

FUNDING

The research was supported by the National Institutes of Health and the California Institute for Regenerative Medicine.
-end-


University of California - Los Angeles

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#478 She Has Her Mother's Laugh
What does heredity really mean? Carl Zimmer would argue it's more than your genes along. In "She Has Her Mother’s Laugh: The Power, Perversions, and Potential of Heredity", Zimmer covers the history of genetics and what kinship and heredity really mean when we're discovering how to alter our own DNA, and, potentially, the DNA of our children.