Nav: Home

Population-specific deep biomarkers of aging

January 11, 2018

Thursday, Jan. 11th, Baltimore, MD - Today, Insilico Medicine, Inc., a Baltimore-based company specializing in the application of artificial intelligence for drug discovery, biomarker development and aging research, announced a publication of a research paper titled "Population-specific biomarkers of human aging: a big data study using South Korean, Canadian and Eastern-European patient populations" in The Journal of Gerontology.

In the paper, the authors present a novel deep-learning based hematological human aging clock, a biomarker that predicts the biological age of individual patients. This big data study uses a large dataset of fully anonymized Canadian, South Korean and Eastern European blood test records to train an aging clock. The developed model predicts the age better than models tailored to the specific populations highlighting the differences of subregion-specific patterns of aging. In addition, the developed clocks were shown to be a better predictor of all-cause mortality than chronological age. The paper includes co-authors from Gachon University Gil Medical Center, University of Copenhagen, University of Alberta, and the Biogerontology Research Foundation.

"If we are to develop actionable biomarkers of aging, we need a comprehensive and robust approach. Such an approach can only be developed using a large number of samples from multiple populations. We are working on multiple biomarkers using deep learning and incorporating blood biochemistry, transcriptomics, and even imaging data to be able to track the effectiveness of the various interventions we are developing". said Polina Mamoshina, a senior research scientist at Insilico Medicine.

"The pursuit of biological aging clocks is a major focus point of the aging field and is a key step in the development of interventions in human aging. This paper represents the evolution of the first easily adaptable clock that can be applied at a population level regardless of population biases. The clock is very cost-effective, without the requirement of next-generation sequencing or other specialized equipment. It is therefore extraordinarily suited for testing aging-interventions in multiple settings across the globe." said Morten Scheibye-Knudsen, MD, Head of the Biology of Aging Laboratory, Center for Healthy Aging, and associate professor, University of Copenhagen.

"Development of effective biomarkers of age is one of the most pressing goals in geroscience today, as it lays the foundation for efficient preclinical and clinical evaluation of potential healthspan-extending interventions. Humans live a long time, and testing the effect of gerontological interventions in humans using lifespan gains as the main criterion for success would be wildly impractical, necessitating long and costly longitudinal studies. By developing accurate biomarkers of aging, the efficacy of potential healthspan-extending interventions could instead be tested according to changes in study participants' biomarkers of age. While significant attention is paid to the development of highly accurate biomarkers of aging, less attention is paid to developing actionable biomarkers of aging that can be tested inexpensively using the tools at hand to the majority of researchers and clinicians. We developed the deep-learning based, blood biochemistry aging clock presented in this paper in the hopes of making progress toward the goal of more actionable biomarkers of aging" said Franco Cortese, co-author of the paper and Deputy Director of the Biogerontology Research Foundation.

"This work demonstrates the synergy between artificial intelligence and aging research. Every living being has age as a feature and it is possible to engage in multi-national collaborations using the very simple data types to assess the population specificity of age predictors. Our group is using advanced AI for multiple clinical applications and has a working collaboration with IBM Watson, but working with Insilico Medicine is a pleasure", said Lee Uhn, PhD, Chief of Artificial Intelligence at the Gachon University Gil Medical Center.

"Age is one of the features possessed by every living creature. In 2015 we made a very neat discovery - when we train the deep neural networks to predict the age of the person, the DNNs capture the most biologically-relevant features and can be re-trained on diseases and can be used to integrate the multiple data types and also extract the most important features within each data type and across the data types. In this paper we show one of the proofs of concept on a very simple and abundant data type that we can now assess the population-specificity of the predictors, the importance of ethnicity and population group in age prediction and the differences in the most important features contributing to the accuracy of these predictors", said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc.

This work may help improve clinical trial enrollment practices, assess the population specificity of a variety of the biomarkers and pave the way for the development of more complex multi-modal biomarkers of aging and disease.
-end-
For further information, images or interviews, please contact:

Contact: Qingsong Zhu, PhD
zhu@pharma.ai
Website: http://www.insilico.com

About Insilico Medicine, Inc

Insilico Medicine, Inc. is an artificial intelligence company located at the Emerging Technology Centers at the Johns Hopkins University Eastern campus in Baltimore, with R&D offices and resources in 6 countries sourced through hackathons and competitions. The company utilizes advances in genomics, big-data analysis, and deep learning for in silico drug discovery and drug repurposing for aging and age-related diseases. The company is pursuing internal drug discovery programs in cancer, Parkinson's Disease, Alzheimer's Disease, ALS, diabetes, sarcopenia, and aging. Through its Pharma.AI division, Insilico provides advanced machine learning services to biotechnology, pharmaceutical, and skin care companies, foundations and national governments globally. In 2017, NVIDIA selected Insilico Medicine as one of the Top 5 AI companies in its potential for social impact and CB Insights named Insilico Medicine to the prestigious top 100 AI companies. http://www.insilico.com

InSilico Medicine, Inc.

Related Aging Articles:

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
More Aging News and Aging Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...