Nav: Home

Re-programming innate immune cells to fight tuberculosis

January 11, 2018

Tuberculosis (TB), an infectious disease which attacks the lungs, claims someone's life every 20 seconds and 1.5 million lives worldwide every year. A cure has eluded scientists for more than a century but, now, a Montreal team of researchers may have discovered a new weapon to combat this global killer. The team is re-programing - or 'training' - immune cells to kill TB. These groundbreaking findings are published online today in the journal Cell.

"The current available BCG-vaccine is not effective. The current antibiotic treatments are toxic and have resulted in generating TB-resistance strains. The antibiotics era is approaching its end; we are in serious trouble with this bug if we don't investigate an alternative approach," says lead corresponding author Dr. Maziar Divangahi, a pulmonary immunologist and expert in immunity to TB at the Research Institute of the McGill University Health Centre (RI-MUHC).

Working with Université de Montréal geneticist Dr. Luis Barreiro and his team at the UdeM-affiliated CHU Sainte-Justine Research Centre, the researchers were able to dissect and identify the genomic pathways involved in triggering an enhanced innate immune response against TB.

Up until now, efforts in generating a vaccine against TB have been mainly focused on T cells (cells from the adaptive arm of our immune response with memory capacity), with very disappointing outcomes in both pre-clinical as well as clinical trials. Now, Dr. Divangahi's and Barreiro's teams have shown for the first time that when BCG, is administered to mice in a way that enables access to the bone marrow, it can reprogram stem cells. These primitive cells are responsible for generating all immune cells including the innate arm of our immune response, the first line of defense in the war against TB.

A cell army trained to eradicate TB

The innate system - via stem cells in the bone marrow - mobilizes macrophages, which are a type of white blood cell that swallows and kills invading bacteria like Mycobacterium tuberculosis (Mtb) that causes TB. They are the immune system's first responders.

However, Mtb disarms the killing program of macrophages and uses them as a kind of "sanctuary" to replicate and grow. Dr. Divangahi's team looked at that process and aimed to find out how to boost the TB-killing efficiency of macrophages. With this goal in mind, Dr. Divangahi's team vaccinated mice with BCG and in a series of experiments observed that in the bone marrow BCG was able to reprogram or "educate" the stem cells to proliferate and generate TB slaying macrophages.

"Although we demonstrated that BCG educates stem cells to generate trained immunity, we had no idea about the molecular mechanisms that were involved in this protective pathway," says Dr. Divangahi, who is also an Associate Director of the Translational Research in Respiratory Diseases Program at the RI-MUHC and an Associate Professor of Medicine at McGill University.

This is when Dr. Divangahi initiated collaboration with Dr. Barreiro and his team at Sainte-Justine. With Dr. Barreiro's team, they aimed to dissect the genomic pathways involved in triggering the enhanced innate immune response against TB.

Dr. Barreiro's team demonstrated how the protective programs were imprinted and transmitted from stem cells all the way to macrophages. In addition, they identified the genetic imprint of the protective pathways in educated macrophages that were "turned on" to kill the TB pathogen. "It's really about finding different ways to develop better vaccines, ones that will harness the power of macrophages and finally put the body's innate immune memory to use" says Dr. Barreiro.

"The current vaccine - BCG - was introduced in 1921 and has failed to control the tuberculosis epidemic. This work will completely re-orient efforts to develop a new vaccine for TB," adds Dr. Marcel Behr, director of the McGill International TB Centre in Montreal.

Although researchers and colleagues are extremely hopeful that this novel approach will generate an effective vaccine against TB and potentially other infectious diseases, Dr. Divangahi added a word of caution. "This is only the tip of the iceberg and further research is clearly required to fully harness the power of stem cells in immunity against infectious diseases."
-end-


McGill University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem cells are the repair cells of your body.  When there aren’t enough of them, or they aren’t working properly, chronic diseases can manifest and persist. From industry leaders, sport stars, and Hollywood icons to thousands of everyday, ordinary people, stem cell therapy has helped when standard medicine failed. Many of them had lost hope. These are their stories.

Neil H Riordan, author of MSC: Clinical Evidence Leading Medicine’s Next Frontier, the definitive textbook on clinical stem cell therapy, brings you an easy-to-read book about how and why stem cells work,... View Details


Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the... View Details


Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem... View Details


Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

The first authoritative yet accessible guide to this controversial topic

Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term.

Explains the differences between adult stem cells and embryonic/umbilical... View Details


The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

The book describes the journey into the growing arena of clinical stem cell therapy by highlighting not only the road that brought a team of physicians together but also real stories from a number of their patients that were given their health back through the magic of stem cell therapy. Your fat is loaded with stem cells that can be used now to treat and reverse a large number of inflammatory and degenerative conditions. Most people have no idea that these magical cells actually exist right within our bodies. They think that they must wait until Big Pharma or a university PhD manufactures... View Details


Stem Cells: Promise and Reality
by Lygia V Pereira (Author)

Stem Cells: Promises and Reality will tell you everything you have always wanted to know about stem cells, but could not understand the field from elsewhere. Stem cells are the great therapeutic promise of the century, and this evolving field of research and medicine brings with it many legal, ethical and psychological issues that must be discussed by society as a whole. Written so as to be accessible to general readers as well as specialists, this book explains what stem cells are, and the different aspects of stem cell research and applications. The book will enable the reader to understand... View Details


Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how... View Details


Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activators
by Joseph Christiano (Author)

Addressing chronic back pain, diabetes, joint replacements, osteoarthritis, neurological issues, and more, Joseph “Dr. Joe” Christiano reveals
how this cutting-edge therapy can rapidly replace damaged cells in the body with no side effects or allergic reactions.
If you have been disappointed by ineffective treatments, the answer to improving your health may be in your stem cells. Dr. Joe explains
how adult stem cell therapy and activators are two of the new technologies in regenerative medicine that will be game changers in medical history.
... View Details


Dr. STEM CELL: Discover how stem cell therapy can eliminate knee, hip, & shoulder pain naturally in only 30 days.
by Dr Ross Carter (Author)

Doc Stem Cell. The Cellular Regeneration Method is a groundbreaking combination of regenerative treatments to ELIMINATE knee, hip, shoulder, and spine pain NATURALLY in 30 days or less, without dangerous surgery or addictive medications. The Cellular Regeneration Method produces truly amazing results with patients who have been suffering for years with chronic pain in their joints and/or spine and living with limitations and who have not achieved lasting results by any other means. In this book, you will discover the 3 phases of healing using treatment from ethically derived stem cells. You... View Details


Stem Cells Are Everywhere
by Irv Weissman MD (Author)

An engaging introduction to stem cells for young scientists
 
How do you heal when you cut your skin or break a bone? How does your body keep making new blood or brain cells, or even second teeth? How does a plant keep growing larger? The answers lie in stem cells, which are found in every growing plant and animal. Keeping the subject simple enough for young readers, a pioneer of stem cell research explains cells, tissues, normal growth, what can go wrong, and how to fix it. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.