Nav: Home

The circadian clock sets the pace of plant growth

January 11, 2018

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.

Plants, like animals, also have an internal clock. In fact, the first hypotheses about the existence of a circadian clock in living organisms came with the observation of leaf and flower movements in plants. For example, the leaves of mimosa plants close at night and open during the day. In 1729, the French astronomer Jean Jacques d'Ortous de Mairan placed a mimosa plant in the dark and observed that, despite the absence of the light stimulus, the leaves still opened and closed rhythmically at the appropriate time of the day.

Today's molecular biologists know well that the plant they use the most as a model, the Arabidopsis thaliana, lengthens the stem just before dawn when the days are short (winter). Studies in recent years have shown that this elongation of the stem in the young seedlings is controlled by PIF proteins, whose cellular accumulation depends on sunlight. Thus, light promotes the degradation of PIF proteins during the day. At night, however, PIF proteins accumulate inside the cell and, just before dawn, promote the plant stem growth. But why does the young stalk grow only before dawn and not during the whole night?

The answer to this question came with a work published in 2016 by the group led by the CSIC researcher at the Centre for Research in Agricultural Genomics (CRAG), Elena Monte. That study discovered that an internal clock protein (TOC1 or PRR1) acts as a gate during the night, allowing PIF to act only at the end of the night. Now, a new study by the same CRAG research group, published this week in the journal Current Biology, expands these results. Elena Monte, along with her team and collaborators, has discovered that other components of the same internal clock protein family -the PRR- act sequentially during the day and most of the night to suppress the action of the PIF proteins.

As the clock proteins described by the Nobel Prize winners, the amount of the different PRR proteins (PRR1, PRR5, PRR7 and PRR9) oscillates sequentially in 24-hour periods. At the end of the night, the total amount of PRR proteins in the cell reaches its minimum, allowing the action of PIF proteins, which, due to the absence of light, are at their peak of maximum concentration. Thus, although some PIF proteins are detected during day hours, they cannot promote the extension of the stem until the end of the night, when the gate opens, coinciding with the optimal humidity conditions for the elongation.

"Our results show that the regulation of plant growth has evolved in plants to encompass the orchestrated sequential action of the PRRs. This demonstrates the dual role of the PRRs: as regulators of the central clock components and as physiological repressors of growth", explains Elena Monte. "Thanks to this study, we have learned how the plant circadian clock affects the plant growth, which is an important process at the agronomic level", adds Guiomar Martín, the first author of the work, who is currently at the Gulbenkian Institute of Science (Portugal).

CDF5: a new key gene for the stem growth

In the work published this week in Current Biology, the authors carried out an exhaustive analysis of the interactions between the proteins and the DNA of the Arabidopsis thaliana plant. This analysis revealed that the CDF5 gene induces stem growth just before dawn. Researchers have shown that the expression of the CDF5 gene is strictly regulated by the union of PIF proteins (which promote its expression) and by PRR clock proteins (which prevent its expression). In this way, CDF5 accumulates specifically during the pre-dawn phase, when it induces the cellular elongation and, consequently, the extension of the stem.

To verify the function of these genes and proteins, the researchers observed the growth of arabidopsis plants carrying mutations in these genes. Plants that had lost one of the PRR family genes (PRR7) grew longer than their wild-type counterparts. The same happened in plants in which the researchers modified the CDF5 gene so it could be expressed during the 24 hours, independently of the PIFs and PRRs actions.
-end-
About the authors

In addition to CRAG research teams led by Elena Monte and Rossana Henriques, researchers from the Universities of Lancaster and Edinburg (United Kingdom), from the Institute for Plant Molecular and Cell Biology (Valencia, Spain) and the Chemical Institute of Sarria (Barcelona, Spain) have also collaborated in the study.

About the Centre for Research in Agricultural Genomics (CRAG)

The Centre for Research in Agricultural Genomics (CRAG) is a centre that forms part of the CERCA system of research centers of the Government of Catalonia, and which was established as a partnership of four institutions: the Spanish National Research Council (CSIC), the Institute for Agri-Food Research and Technology (IRTA), the Autonomous University of Barcelona (UAB) and the University of Barcelona (UB). CRAG's research spans from basic research in plant and farm animal molecular biology, to applications of molecular approaches for breeding of species important for agriculture and food production in close collaboration with industry. CRAG has been recognized as "Centro de Excelencia Severo Ochoa 2016-2019" by the Spanish Ministry of Economy, Industry and Competitiveness.

Centre for Research in Agricultural Genomics

Related Circadian Clock Articles:

How circadian clocks communicate with each other
Multiple biological clocks control the daily rhythms of physiology and behavior in animals and humans.
Circadian clock changes can alter body's response to diet
Changing the circadian clock in mouse liver can alter how the body responds to diet and also change the microbes living in the digestive track.
Red and violet light reset the circadian clock in algae via novel pathway
A Nagoya University-led team uncovered a pathway in the alga Chlamydomonas reinhardtii that resets its circadian clock on exposure to red or violet light.
TSRI researchers show how circadian 'clock' may influence cancer pathway
A new study led by scientists at The Scripps Research Institute describes an unexpected role for proteins involved with our daily 'circadian' clocks in influencing cancer growth.
Powering up the circadian rhythm
Salk team first to discover protein that controls the strength of body's circadian rhythms.
With a broken circadian clock, even a low-salt diet can raise resting blood pressure, promote disease
In the face of a disrupted circadian rhythm, a low-salt diet and a hormone known to constrict blood vessels have the same unhealthy result: elevated resting blood pressure and vascular disease, scientists report.
Bacteria engineered with synthetic circadian clocks
Many of the body's processes follow a natural daily rhythm or so-called circadian clock, so there are certain times of the day when a person is most alert, when the heart is most efficient, and when the body prefers sleep.
New research helps to explain how temperature shifts the circadian clock
One important aspect of the internal time-keeping system continues to perplex scientists: its complex response to temperature, which can shift the clock forward or backward, but cannot change its 24-hour period.
Circadian clock controls insulin and blood sugar in pancreas
A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.
Uncovering the secrets of sleep and circadian rhythms
Our circadian rhythms tell us when it's time to sleep and energize us at different times of the day; evidence suggests it also plays a role in the development of diseases such as cancer.

Related Circadian Clock Reading:

The Circadian Code: Lose Weight, Supercharge Your Energy, and Transform Your Health from Morning to Midnight
by Satchin Panda PhD (Author)

Change Your Schedule, Change Your Life: How to Harness the Power of Clock Genes to Lose Weight, Optimize Your Workout, and Finally Get a Good Night's Sleep
by Dr. Suhas Kshirsagar (Author), Michelle D. Seaton (Author), Deepak Chopra (Foreword)

Circadian Clocks: Role in Health and Disease (Physiology in Health and Disease)
by Michelle L. Gumz (Editor)

Circadian
by Chelsey Clammer (Author)

Summary & Analysis of The Circadian Code: Lose Weight, Supercharge Your Energy, and Transform Your Health from Morning to Midnight | A Guide to the Book by Satchin Panda
by ZIP Reads

Circadian Rhythms: A Very Short Introduction (Very Short Introductions)
by Russell Foster (Author), Leon Kreitzman (Author)

The Women's Health Body Clock Diet: The 6-Week Plan to Reboot Your Metabolism and Lose Weight Naturally
by Editors of Women's Health (Author)

Circadian Clocks (Handbook of Experimental Pharmacology)
by Achim Kramer (Editor), Martha Merrow (Editor)

Biological Clocks, Rhythms, and Oscillations: The Theory of Biological Timekeeping (The MIT Press)
by Daniel B. Forger (Author)

The Clocks That Time Us: Physiology of the Circadian Timing System (Commonwealth Fund Publications)
by Martin C. Moore-Ede (Author), Frank M. Sulzman (Author), Charles A. Fuller (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...