Super-adsorbent MOF captures twice its weight in water

January 11, 2018

Material chemists in the Kingdom of Saudi Arabia have developed a superporous solid made up of a patchwork of metal ions and organic linkers (a metal-organic framework, or MOF) that can suck up to 200% of its own weight in atmospheric moisture. The technology, presented January 11 in the journal Chem, could be applied to regulating humidity levels, particularly in confined environments such as aircraft cabins and air-conditioned buildings.

"I am not surprised that MOFs surpass existing solids in their water capacity uptake," says senior author Mohamed Eddaoudi, of the King Abdullah University of Science and Technology. "MOFs' modularity, ultra-high surface areas, and large pore volumes, combined with the ability to control the pore surface functionality and pore size and shape, place MOFs as prospective candidates for energy-efficient and cost-effective humidity-control systems."

Permanently porous superabsorbent materials, with the combined requisite hydrolytic stability and significant water uptake, are challenging to make because most porous solids are either too dense or too reactive to water. Eddaoudi and his collaborators overcame this problem with their design of Cr-soc-MOF-1, a MOF made up of chromium ions linked together by carboxylate-based organic ligands that leave well-defined cages and channels for water to collect. The chromium ions are held in place by carboxylate moieties in a bidentate fashion, forming a rigid hexacarboxylate oxo-trinuclear chromium(III) cluster, ensureing that the resultant Cr-soc-MOF-1 adsorbent possess the required hydrolytic stability.

The researchers tested Cr-soc-MOF-1's water adsorption properties and found that as the relative humidity increases up to 55%, the adsorbed amount of water gradually increases, followed by a steep water uptake between 60 and 75% relative humidity. As this point, the MOF reaches its maximum capacity, where it can capture nearly twice its weight in adsorbed water (1.95 g/g). Markedly, Cr-soc-MOF-1 maintains its structural integrity and performance over more than 100 tested water vapor adsorption-desorption cycles.

Now that the researchers have a material that can readily regulate humidity (absorbs and desorbs), they are engaged in collaborative work to develop ways to create a humidity-control device.

"In 20 years we went from a folklore that MOFs are not stable and are just pretty structures to MOFs with unprecedented hydrolytic stability and exceptional properties relevant to energy security and environmental sustainability," Eddaoudi says. "There is no doubt in my mind that the future of MOFs is bright, and the only limitation will be the scientist's imagination on where MOFs can be deployed effectively and efficiently."
-end-
The research was fully supported by the King Abdullah University of Science and Technology.

Chem, Abtab et al.: "Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water" http://www.cell.com/chem/fulltext/S2451-9294(17)30473-4

Chem (@Chem_CP) is the first physical science journal published by Cell Press. The sister journal to Cell, Chem, which is published monthly, provides a home for seminal and insightful research and showcases how fundamental studies in chemistry and its sub-disciplines may help in finding potential solutions to the global challenges of tomorrow. Visit http://www.cell.com/chem. To receive Cell Press media alerts, contact press@cell.com

Cell Press

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.