Nav: Home

UCLA scientists make cells that enable the sense of touch

January 11, 2018

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have, for the first time, coaxed human stem cells to become sensory interneurons -- the cells that give us our sense of touch. The new protocol could be a step toward stem cell-based therapies to restore sensation in paralyzed people who have lost feeling in parts of their body.

The study, which was led by Samantha Butler, a UCLA associate professor of neurobiology and member of the Broad Stem Cell Research Center, was published today in the journal Stem Cell Reports.

Sensory interneurons, a class of neurons in the spinal cord, are responsible for relaying information from throughout the body to the central nervous system, which enables the sense of touch. The lack of a sense of touch greatly affects people who are paralyzed. For example, they often cannot feel the touch of another person, and the inability to feel pain leaves them susceptible to burns from inadvertent contact with a hot surface.

"The field has for a long time focused on making people walk again," said Butler, the study's senior author. "'Making people feel again doesn't have quite the same ring. But to walk, you need to be able to feel and to sense your body in space; the two processes really go hand in glove."

In a separate study, published in September by the journal eLife, Butler and her colleagues discovered how signals from a family of proteins called bone morphogenetic proteins, or BMPs, influence the development of sensory interneurons in chicken embryos. The Stem Cell Reports research applies those findings to human stem cells in the lab.

When the researchers added a specific bone morphogenetic protein called BMP4, as well as another signaling molecule called retinoic acid, to human embryonic stem cells, they got a mixture of two types of sensory interneurons. DI1 sensory interneurons give people proprioception -- a sense of where their body is in space -- and dI3 sensory interneurons enable them to feel a sense of pressure.

The researchers found the identical mixture of sensory interneurons developed when they added the same signaling molecules to induced pluripotent stem cells, which are produced by reprogramming a patient's own mature cells such as skin cells. This reprogramming method creates stem cells that can create any cell type while also maintaining the genetic code of the person they originated from. The ability to create sensory interneurons with a patient's own reprogrammed cells holds significant potential for the creation of a cell-based treatment that restores the sense of touch without immune suppression.

Butler hopes to be able to create one type of interneuron at a time, which would make it easier to define the separate roles of each cell type and allow scientists to start the process of using these cells in clinical applications for people who are paralyzed. However, her research group has not yet identified how to make stem cells yield entirely dI1 or entirely dI3 cells -- perhaps because another signaling pathway is involved, she said.

The researchers also have yet to determine the specific recipe of growth factors that would coax stem cells to create other types of sensory interneurons.

The group is currently implanting the new dI1 and dI3 sensory interneurons into the spinal cords of mice to understand whether the cells integrate into the nervous system and become fully functional. This is a critical step toward defining the clinical potential of the cells.

"This is a long path," Butler said. "We haven't solved how to restore touch but we've made a major first step by working out some of these protocols to create sensory interneurons."
-end-
The research was supported by grants from the California Institute for Regenerative Medicine and its Cal State Northridge-UCLA Bridges to Stem Cell Research program, the National Institutes of Health and the UCLA Broad Stem Cell Research Center.

University of California - Los Angeles Health Sciences

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...