Nav: Home

Babies stir up clouds of bio-gunk when they crawl

January 11, 2018

WEST LAFAYETTE, Ind. -- When babies crawl, their movement across floors, especially carpeted surfaces, kicks up high levels of dirt, skin cells, bacteria, pollen, and fungal spores, a new study has found. The infants inhale a dose of bio bits in their lungs that is four times (per kilogram of body mass) what an adult would breathe walking across the same floor.

As alarming as that sounds, lead researcher Brandon Boor of Purdue University is quick to add that this isn't necessarily a bad thing.

"We are interested in the biological material an infant inhales, especially during their first year of life when they are crawling. Many studies have shown that inhalation exposure to microbes and allergen-carrying particles in that portion of life plays a significant role in both the development of, and protection from, asthma and allergic diseases," Boor says. "There are studies that have shown that being exposed to a high diversity and concentration of biological materials may reduce the prevalence of asthma and allergies later in life."

A YouTube is available at https://www.youtube.com/watch?v=QqTi9fK70t0&feature=youtu.be.

Scientists have previously done studies to determine how much dirt and biological material is kicked up and resuspended into the air when an adult walks indoors, but this is the first study to look at what happens with infants and their unique forms of locomotion.

Human babies are the only mammals that can't get up and walk soon after being born. Elephants, giraffes, horses, all can take a few wobbly steps soon after they enter the world, but it's months before a human can claim the same accomplishment. (Anthropologist David Tracer of the University of Colorado has suggested that based on studies of indigenous cultures, crawling is not necessary for human development. In fact, he has suggested, it only became common once people began living in structures with wooden floors.)

As babies roll, slide and crawl on the floor, their movements stir up more particulates into the air, and their mouths and nostrils are much closer to the floor where the concentrations are greater. This is countered somewhat by the fact that babies tend to move in much shorter bursts of activity than do older children or adults.

To study just how much of the floor debris babies breathe, the research team built a robotic crawling baby (which is much less adorable than the real thing) and tested it crawling on actual carpet samples they had removed from homes. Then the researchers measured and analyzed the particulates in the breathing zone.

"We used state-of-the-art aerosol instrumentation to track the biological particles floating in the air around the infant in real-time, second by second. The instrument uses lasers to cause biological material to fluoresce. Most bacterial cells, fungal spores, and pollen particles are fluorescent, so they can be reliably distinguished from non-biological material in the air," Boor says. "We also worked with a microbiology group at Finland's National Institute for Health and Welfare, which conducted DNA-based analysis of the microbes we collected onto filters."

The researchers found that a concentrated cloud of resuspended particles forms around the Pig-Pen wannabes, and that the concentrations around them can be as much as 20 times greater than the levels of material higher in the room.

Moreover, infants' bodies aren't as good at blocking this dust storm, Boor says.

"For an adult, a significant portion of the biological particles are removed in the upper respiratory system, in the nostrils and throat. But for very young children, they more often breathe through their mouths, and a significant fraction is deposited in the lower airways--the tracheobronchial and pulmonary regions. The particles make it to the deepest regions of their lungs."

Counterintuitively, perhaps, this may be just what nature intended.

In the late 1980s, British epidemiologist David Strachan was the first to propose the "hygiene hypothesis," which says that too clean of an environment may suppress the development of the immune system. Allergists also sometimes refer to this as "the farming effect."

"Exposure to certain bacterial and fungal species can result in the development of asthma, but numerous studies have shown that when an infant is exposed to a very high diversity of microbes, at a high concentration, they can have a lower rate of asthma later in life. Such exposures act to stimulate and challenge your immune system," Boor says.

In Western societies, infants spend nearly all of their time indoors, where indoor dust resuspension may contribute significantly to their respiratory encounters with biological material.

"While our research established new methods for infant microbial exposure assessment, much remains to be discovered," Boor says. "I hope to continue to work with microbiologists and immunologists to better understand the role of indoor air microbes and allergens on early-childhood health."
-end-


Purdue University

Related Asthma Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
New knowledge on the development of asthma
Researchers at Karolinska Institutet in Sweden have studied which genes are expressed in overactive immune cells in mice with asthma-like inflammation of the airways.
Eating fish may help prevent asthma
A scientist from James Cook University in Australia says an innovative study has revealed new evidence that eating fish can help prevent asthma.
Academic performance of urban children with asthma worse than peers without asthma
A new study published in Annals of Allergy, Asthma and Immunology shows urban children with poorly controlled asthma, particularly those who are ethnic minorities, also suffer academically.
Asthma Controller Step Down Yardstick -- treatment guidance for when asthma improves
The focus for asthma treatment is often stepping up treatment, but clinicians need to know how to step down therapy when symptoms improve.
Asthma management tools improve asthma control and reduce hospital visits
A set of comprehensive asthma management tools helps decrease asthma-related visits to the emergency department, urgent care or hospital and improves patients' asthma control.
Asthma linked to infertility but not among women taking regular asthma preventers
Women with asthma who only use short-acting asthma relievers take longer to become pregnant than other women, according to research published in the European Respiratory Journal.
What are the best ways to diagnose and manage asthma?
A team of experts from The University of Texas Medical Branch at Galveston examined the current information available from many different sources on diagnosing and managing mild to moderate asthma in adults and summarized them.
Insomnia prevalent in patients with asthma
A team of researchers from the University of Pittsburgh has found that insomnia is highly prevalent in adults with asthma and is also associated with worse asthma control, depression and anxiety symptoms and other quality of life and health issues.
Test used to diagnose asthma may not be accurate
A new study urges caution in the use of the mannitol challenge test for asthma in non-clinical settings.
More Asthma News and Asthma Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab