Nav: Home

How the animal brain deciphers the locations of animals nearby

January 11, 2018

Two new studies have identified a subset of neurons in the bat and rat hippocampi, respectively, that specifically encode the spatial position of others of the same species. While scientists have been able to identify neurons that help an organism decipher its own spatial location, surprisingly little is known about how the positions of other animals, relative to the self, are represented in the brain. Yet for social animals, knowing the location of other individuals is critical for social interactions, observational learning, and for group navigation. In one study involving bats, David Omer and colleagues designed an experiment where one observer bat watched a friend fly onto one of two landing balls. After a brief time delay, the observer bat had to match the same trajectory in order to receive a reward. While the bats performed this task, the researchers recorded the activity of more than 350 neurons in the bats' hippocampi. Similar experiments were done where an inanimate object, taking the place of the demonstrator bat, was moved to one of the landing balls to indicate the right course to the observer bat. By comparing differences in neural activity between the two different landing sites, as well as live bats versus inanimate objects, Omer et al. were able to identify a subset of cells in the observer bat that specifically encode the spatial location of the demonstrator bat. The authors observed a number of differences between the neural representation of another bat as compared to the inanimate objects. For example, neurons tended to exhibit higher "spatial resolution" when encoding the space of a bat compared to an object. In a second study, Teruko Danjo and colleagues designed an experiment where, in a maze, one rat (a "self" rat) was required to choose to go left or right to retrieve a reward based on the location of a second rat (an "other" rat). The self rat was trained in two different scenarios, receiving a reward when it went to the same side of the maze where the other rat resided, or receiving one when it went to the opposite side. The researchers used these differences in spatial goals and locations to identify neurons in the hippocampus that specifically encoded the position of the other rat.

American Association for the Advancement of Science

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...