Nav: Home

Organic molecule benzonitrile detected in space

January 11, 2018

Scientists studying a cold molecular cloud of the Taurus region with radio telescopes have detected the presence of a particular organic molecule called benzonitrile. The finding marks the first time a specific aromatic molecule has been identified in space using radio spectroscopy. It also sheds light on the composition of aromatic material within the interstellar medium - material that will eventually be incorporated into new stars and planets. Organic molecules containing a hexagonal ring of carbon atoms, known as aromatic molecules, are abundant throughout the Universe. Astronomers know this because aromatic molecules emit a characteristic set of emission features in the infrared, which are observed in many space environments. However, identifying precisely which aromatic molecules are present is very difficult, and usually requires radio spectroscopy. Improved methods for detecting weak radio emission are helping scientists gain a better glimpse into the cosmos. Brett A. McGuire et al. took advantage of such a method, a so-called spectral-stacking procedure, to find signatures of benzonitrile while combing through a radio survey of the Taurus Molecular Cloud 1 (TMC-1). To confirm their identification, they conducted thorough laboratory experiments to accurately measure the different rotational transitions of the molecule. By comparing their experimental data to targeted observations of TMC-1 using another radio telescope, they were able to observe nine different rotational transitions of benzonitrile, solidifying the detection. Christine Joblin and José Cernicharo discuss the implications of these findings in a related Perspective. Studying the composition of organic molecules in space is key for understanding molecular complexity in protoplanetary disks surrounding young stars, among other applications, they say.
-end-


American Association for the Advancement of Science

Related Organic Molecules Articles:

Organic electronics: Semiconductors as decal stickers
No more error-prone evaporation deposition, drop casting or printing: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and FSU Jena have developed organic semiconductor nanosheets, which can easily be removed from a growth substrate and placed on other substrates.
New organic lasers one step closer to reality
Researchers at Kyushu University's Center for Organic Photonics and Electronics Research have developed an optically pumped organic thin-film laser that can continuously emit light for 30 ms, which is more than 100 times longer than previous devices.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Organic electronics can use power from socket
Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University.
The repulsion trick: A self-solving puzzle for organic molecules
Jülich researchers have succeeded in controlling the growth of organic molecules using a special trick.
Metal-organic frameworks used as looms
Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials.
New insights into the forms of metal-organic frameworks
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST), has introduced a new novel design strategy for synthesizing various forms of metal-organic materials (MOMs).
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Report provides options for organic soybean growers
Although soybeans are one of the most widely grown crops in the U.S., few soybean farmers are using organic practices.
Chemists design organic molecules that glow persistently at room temperature
LEDs have inspired a new generation of electronics, but there is still work ahead if we want luminescent materials to consume less energy and have longer lifespans.

Related Organic Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...