Solving Darwin's 'abominable mystery': How flowering plants conquered the world

January 11, 2018

Scientists have found an explanation for how flowering plants became dominant so rapidly in ecosystems across the world -- a problem that Charles Darwin called an 'abominable mystery'. In a study publishing on January 11 in the open access journal PLOS Biology, Kevin Simonin and Adam Roddy, from San Francisco State University and Yale University respectively, found that flowering plants have small cells relative to other major plant groups and that this small cell size is made possible by a greatly reduced genome size.

For more than 200 years, scientists have speculated about the incredible diversity and success of flowering plants, which form the basis of our food system and are responsible for fueling much of the animal diversity we see today.

Over the last thirty years researchers have shown that the flowering plants have unparalleled rates of photosynthesis. This has allowed them to grow faster and to outcompete ferns and conifers which had dominated ecosystems for hundreds of millions of years. The secret to the metabolic success of flowering plants is their specialized leaves that facilitate faster rates of water transport and carbon dioxide uptake. But how were the flowering plants able to build leaves capable of these high rates of transpiration and photosynthesis?

This new research provides a mechanism. By scouring the literature for data, the authors argue that these anatomical innovations are directly linked to the size of their genome.

Because each cell has to contain a copy of the plant's genome, smaller genomes allow cells to be smaller, and if cells are smaller then more cells (such as those specialized for photosynthetic metabolism and water and nutrient transport) can be packed into a given volume of space. Additionally, by shrinking the size of each cell, water and nutrient delivery can be made more efficient.

Comparing hundreds of species, the researchers found that genome downsizing began about 140 million years ago and coincided with the spread of the earliest flowering plants around the world. "The flowering plants are the most important group of plants on earth, and now we finally know why they have been so successful," they say.

Although this research answers a major question, it opens the door to many more. Why were the flowering plants able to shrink their genomes more than other plant groups? What innovations in genome structure and packing have the flowering plants exploited? How have the ferns and conifers managed to elude extinction despite their large genomes and cells?
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003706

Citation: Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol 16(1): e2003706. https://doi.org/10.1371/journal.pbio.2003706

Funding: The author(s) received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.