Nav: Home

The algae's third eye

January 11, 2019

Just like land plants, algae use sunlight as an energy source. Many green algae actively move in the water; they can approach the light or move away from it. For this they use special sensors (photoreceptors) with which they perceive light.

The decades-long search for these light sensors led to a first success in 2002: Georg Nagel, at the time at Max-Planck-Institute of Biophysics in Frankfurt/M, and collaborators discovered and characterized two so-called channelrhodopsins in algae. These ion channels absorb light, then open up and transport ions. They were named after the visual pigments of humans and animals, the rhodopsins.

Now a third "eye" in algae is known: Researchers discovered a new light sensor with unexpected properties. The research groups of Professor Armin Hallmann (Bielefeld University) and Professor Georg Nagel (Julius-Maximilians-Universität Würzburg, JMU) report this finding in the journal BMC Biology.

Light reduces cGMP production

The surprise: The new photoreceptor is not activated by light but inhibited. It is a guanylyl cyclase which is an enzyme that synthesizes the important messenger cGMP. When exposed to light, cGMP production is severely reduced, leading to a reduced cGMP concentration - and that's exactly what happens in the human eye as soon as the rhodopsins there absorb light.

The newly discovered sensor is regulated by light and by the molecule ATP. Such "two component systems" are already well known in bacteria, but not in higher evolved cells. The researchers have named the new photoreceptor "Two Component Cyclase Opsin", 2c-cyclop for short. They found it in two green algae, in the unicellular Chlamydomonas reinhardtii as well as in the multicellular Volvox carteri.

Function shown in oocytes and algae

"For many years there has been genetic data from which we could conclude that in green algae there must be many more rhodopsins than the two previously characterized," explains Georg Nagel. Only in Chlamydomonas reinhardtii twelve protein sequences are assigned to the opsins, which are the precursors of rhodopsins.

"So far, nobody could demonstrate the function of these light sensors," says Nagels co-researcher Dr. Shiqiang Gao. Only the research groups from Bielefeld and Würzburg have succeeded in doing so: They have installed the new rhodopsin in oocytes of the toad Xenopus laevis and in the spherical alga Volvox carteri. In both cases, its function could be shown and characterized.

Perspectives for Optogenetics

The authors believe that the 2c-Cyclop light sensor offers new opportunities for optogenetics. With this methodology, the activity of living tissues and organisms can be influenced by light signals. By means of optogenetics, many basic biological processes in cells have already been elucidated. For example, it provided new insights into the mechanisms of Parkinson's disease and other neurological diseases. She also brought new insights into diseases like autism, schizophrenia, and depression or anxiety disorders.
-end-
The JMU researcher Georg Nagel and the biophysicist Peter Hegemann (Humboldt Universität Berlin) are among the pioneers of optogenetics: They discovered the channelrhodopsins and found that the light-controlled ion channels from algae can be incorporated into animal cells and then controlled with light. For this achievement, both - together with other researchers - have received multiple awards.

University of Würzburg

Related Algae Articles:

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.
Algae shown to improve gastrointestinal health
A green, single-celled organism called Chlamydomonas reinhardtii has served as a model species for topics spanning algae-based biofuels to plant evolution.
How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.
Algae and bacteria team up to increase hydrogen production
A University of Cordoba research group combined algae and bacteria in order to produce biohydrogen, fuel of the future
Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Algae could prevent limb amputation
A new algae-based treatment could reduce the need for amputation in people with critical limb ischemia, according to new research funded by the British Heart Foundation, published today in the journal npj Regenerative Medicine.
Turning algae into fuel
A team of University of Utah chemical engineers have developed a new kind of jet mixer for creating biomass from algae that extracts the lipids from the watery plants with much less energy than the older extraction method.
The algae's third eye
Scientists at the Universities of Würzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae.
How some algae may survive climate change
Green algae that evolved to tolerate hostile and fluctuating conditions in salt marshes and inland salt flats are expected to survive climate change, thanks to hardy genes they stole from bacteria, according to a Rutgers-led study.
More Algae News and Algae Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.