Nav: Home

The algae's third eye

January 11, 2019

Just like land plants, algae use sunlight as an energy source. Many green algae actively move in the water; they can approach the light or move away from it. For this they use special sensors (photoreceptors) with which they perceive light.

The decades-long search for these light sensors led to a first success in 2002: Georg Nagel, at the time at Max-Planck-Institute of Biophysics in Frankfurt/M, and collaborators discovered and characterized two so-called channelrhodopsins in algae. These ion channels absorb light, then open up and transport ions. They were named after the visual pigments of humans and animals, the rhodopsins.

Now a third "eye" in algae is known: Researchers discovered a new light sensor with unexpected properties. The research groups of Professor Armin Hallmann (Bielefeld University) and Professor Georg Nagel (Julius-Maximilians-Universität Würzburg, JMU) report this finding in the journal BMC Biology.

Light reduces cGMP production

The surprise: The new photoreceptor is not activated by light but inhibited. It is a guanylyl cyclase which is an enzyme that synthesizes the important messenger cGMP. When exposed to light, cGMP production is severely reduced, leading to a reduced cGMP concentration - and that's exactly what happens in the human eye as soon as the rhodopsins there absorb light.

The newly discovered sensor is regulated by light and by the molecule ATP. Such "two component systems" are already well known in bacteria, but not in higher evolved cells. The researchers have named the new photoreceptor "Two Component Cyclase Opsin", 2c-cyclop for short. They found it in two green algae, in the unicellular Chlamydomonas reinhardtii as well as in the multicellular Volvox carteri.

Function shown in oocytes and algae

"For many years there has been genetic data from which we could conclude that in green algae there must be many more rhodopsins than the two previously characterized," explains Georg Nagel. Only in Chlamydomonas reinhardtii twelve protein sequences are assigned to the opsins, which are the precursors of rhodopsins.

"So far, nobody could demonstrate the function of these light sensors," says Nagels co-researcher Dr. Shiqiang Gao. Only the research groups from Bielefeld and Würzburg have succeeded in doing so: They have installed the new rhodopsin in oocytes of the toad Xenopus laevis and in the spherical alga Volvox carteri. In both cases, its function could be shown and characterized.

Perspectives for Optogenetics

The authors believe that the 2c-Cyclop light sensor offers new opportunities for optogenetics. With this methodology, the activity of living tissues and organisms can be influenced by light signals. By means of optogenetics, many basic biological processes in cells have already been elucidated. For example, it provided new insights into the mechanisms of Parkinson's disease and other neurological diseases. She also brought new insights into diseases like autism, schizophrenia, and depression or anxiety disorders.
-end-
The JMU researcher Georg Nagel and the biophysicist Peter Hegemann (Humboldt Universität Berlin) are among the pioneers of optogenetics: They discovered the channelrhodopsins and found that the light-controlled ion channels from algae can be incorporated into animal cells and then controlled with light. For this achievement, both - together with other researchers - have received multiple awards.

University of Würzburg

Related Algae Articles:

Algae: The final frontier
Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universität Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
A better way to farm algae
Researchers at Syracuse University have developed a method that improves the growth of microalgae, which could have big implications for production of biofuels and other valuable chemicals.
Pretty in pink: Some algae like it cold
UC researchers are leading efforts to learn more about the effects of pink snow algae on glaciers and snowfields covering Pacific Northwest stratovolcanoes.
Public willing to pay to reduce toxic algae -- but maybe not enough
A collaboration of universities and government agencies has identified three key agricultural management plans for curtailing harmful algal blooms.
Why cryptophyte algae are really good at harvesting light
In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight.
Algae discovery offers potential for sustainable biofuels
Algae with altered intracellular signaling have increased oil yields.
Harnessing algae for the creation of clean energy
Researchers at Tel Aviv University have revealed how microalgae produce hydrogen, a clean fuel of the future, and suggest a possible mechanism to jumpstart mass production of this environmentally friendly energy source.

Related Algae Reading:

Algae: Anatomy, Biochemistry, and Biotechnology, Second Edition
by Laura Barsanti (Author), Paolo Gualtieri (Author)

Algae (2nd Edition)
by James E. Graham (Author), Lee W. Wilcox (Author), Linda E. Graham (Author)

Freshwater Algae: Identification, Enumeration and Use as Bioindicators
by Edward G. Bellinger (Author), David C. Sigee (Author)

A is for Algae
by Jillian Freese (Author)

Algae: A Problem Solver Guide (Oceanographic Series)
by Julian Sprung (Author)

Algae Microfarms: for home, school, community and urban gardens, rooftop, mobile and vertical farms and living buildings
by Mr Robert Henrikson (Author), Dr Mark Edwards (Introduction)

Freshwater Algae of North America: Ecology and Classification (Aquatic Ecology)
by John D. Wehr (Editor), Robert G. Sheath (Editor), J. Patrick Kociolek (Editor)

Algae: Introduction Phycology: An Introduction to Phycology
by Christiaan van den Hoek (Author)

Seaweeds of the Pacific Coast: Common Marine Algae from Alaska to Baja California
by Jennifer Mondragon (Author), Jeff Mondragon (Author)

Grow Algae for Profit: How to Build a Photobioreactor for Growing Algae for Proteins, Lipids, Carbohydrates, Anti-Oxidants, Biofuels, Biodiesel, and Other Valuable Metabolites
by Solardyne, LLC

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.