Nav: Home

Reviewing advanced applications in drug delivery and medicine

January 11, 2019

The Graphene family of materials (GFNs) has emerged as one of the most useful new age nano-biomaterials. Graphene-based materials exhibit excellent physicochemical properties, such as high electrical conductivity, mechanical strength, and high surface area with π-conjugated carbon atoms stacked to form honeycomb structure, suitable for binding other molecules. All these properties make GFNs an ideal carrier of cellular drug delivery, Moreover, the ability of GFNs to exhibit fluorescence under specific wavelengths of light, makes them attractive for use in cellular imaging techniques.

Graphene Quantum Dots (GQDs) are great for this purpose. GFNs are also used in a plethora of applications in biomedicine including cancer medicine for targeted drug delivery and phototherapy, antimicrobial therapies in conjugation with regular antimicrobial agents for fighting drug resistance, developing microbicidal surfaces and materials, gene delivery, in-vivo imaging and tissue regeneration (especially for neural and bone tissue conduits). More recently GFNs have shown activity against HIV. GFNs can also be tailored for specific needs by means of functionalization with suitable motifs and doping with elements, like nitrogen and phosphorous, for desired applications.

Extensive research projects are now focusing on developing GFNs and a newer generation of like materials such as graphene nanoribbons, graphene nanoplatelets, warped nanographene and reduced graphene nano-mesh has emerged. Many of these materials overcome the limitations of previous generations of GFNs in terms of toxicity and water insolubility, which make these nanomaterials very suitable for biomedical applications. Newer synthetic methods of nontoxic graphene are also emerging; such methods include laser ablation and hydrothermal synthesis and green synthesis. These newer methods in the future will pave way for extensive use of graphene in biomedicine. Once industry-wide scaling upgrades will be achieved, we can expect graphene to be one of the most used biomaterial components in the future.
-end-
To obtain the article please visit http://www.eurekaselect.com/166853/article

Bentham Science Publishers

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...