Nav: Home

Responses of benthic foraminifera to changes of temperature and salinity

January 11, 2019

Benthic foraminifera are widely used as paleoenvironmental proxies because of their high sensitivity to environmental changes and excellent preservation potential in sediment. Affected by global changes, environmental factors such as seawater temperature and salinity are changing, which will affect the distribution and species composition of benthic foraminifera. A recent study revealed how the benthic foraminiferal community respond to the change of temperature and salinity.

This study is published in the journal Science China Earth Sciences with title of Responses of benthic foraminifera to changes of temperature and salinity: Results from a laboratory culture experiment. Prof. Yanli LEI from Institute of Oceanology Chinese Academy of Sciences is corresponding authors of this article. Through laboratory culture experiment, the researchers only changed the temperature and salinity, while controlling other environmental parameters consistent. They conducted a two-factor crossed experiment in which foraminiferal communities were cultured at different temperatures (6, 12, and 18°C) and salinities (15, 20, 25, and 30 psu) for 10 weeks. The research revealed the different response of benthic foraminifera communities to the change of temperature and salinity.

Scientist knows little about the response of benthic foraminifera to environmental factors. Environmental factors are not independent, and the responses of foraminifera usually reflect the combined effects of the measured environmental factors and other unknown biotic and abiotic factors in the field. Therefore, it is difficult to discern cause-effect relationships between environmental factors and changes in benthic foraminiferal community in field studies, especially with interactive effects.

To solve this problem, laboratory-controlled culture methods were used in this study. The researchers cultured the entire foraminiferal communities with the natural sediments from the intertidal area of Qingdao Bay for 10 weeks. They analyzed and compared the foraminiferal community under different conditions of temperature and salinity. The study showed that temperature affected foraminiferal community more significantly than salinity. In addition, with increasing temperature, the species composition shifted from hyaline taxon to porcellaneous taxon.

This study indicates that the benthic foraminiferal community is very sensitive to the change of environmental factors (e.g., temperature and salinity) and it can be used to indicate the changes in the marine ecosystem. At the same time, this finding has important scientific significance and reference value for reconstructing the paleoenvironment by using benthic foraminiferal community composition.
-end-
This research was funded by the National Natural Science Foundation of China (Grant Nos. 41476043, 41630965 & 41830539), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11030104), the National Program on 'Global Change and Air-Sea Interaction' (Grant No. GASI-03-01-03-01), the Continental Shelf Drilling Program of China (Grant No. GZH201100202), the Paul Brönnimann Foundation 2014.

See the article: Shuaishuai DONG, Yanli LEI, Tiegang LI, Zhimin JIAN. 2018. Responses of benthic foraminifera to changes of temperature and salinity: Results from a laboratory culture experiment. Science China Earth Sciences, 61 https://doi.org/10.1007/s11430-017-9269-3

Science China Press

Related Foraminifera Articles:

Tiny shells reveal waters off California are acidifying twice as fast as the global ocean
In first-of-its-kind research, NOAA scientists and academic partners used 100 years of microscopic shells to show that the coastal waters off California are acidifying twice as fast as the global ocean average -- with the seafood supply in the crosshairs.
Mystery solved: Ocean acidity in the last mass extinction
A new study led by Yale University confirms a long-held theory about the last great mass extinction event in history and how it affected Earth's oceans.
It really was the asteroid
Fossil remains of tiny calcareous algae not only provide information about the end of the dinosaurs, but also show how the oceans recovered after the fatal asteroid impact.
Filter-feeding pterosaurs were the flamingos of the Late Jurassic
Modern flamingos employ filter feeding and their feces are, as a result, rich in remains of microscopically-small aquatic prey.
Ancient plankton help researchers predict near-future climate
Temperature data inferred from plankton fossils from the Pliocene, an era with CO2 levels similar to today's, allowed a UA-led team to rectify discrepancies between climate models and other proxy temperature measurements.
Fossil zooplankton indicate that marine ecosystems have entered the Anthropocene
Climate change caused by humans impacts species diversity and ecosystems.
Earth's recovery from mass extinction could take millions of years
Recovering from mass extinction has a 'speed limit,' say researchers, with gradual patterns of ecosystem redevelopment and speciation.
Evolution imposes 'speed limit' on recovery after mass extinctions
It takes at least 10 million years for life to fully recover after a mass extinction, a speed limit for the recovery of species diversity that is well known among scientists.
What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.
Artificial intelligence can identify microscopic marine organisms
Researchers have developed an artificial intelligence (AI) program that can automatically provide species-level identification of microscopic marine organisms.
More Foraminifera News and Foraminifera Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.