Nav: Home

Synthes, in silico molecular docking & pharmacokinetic studies

January 11, 2019

Researchers from the Department of Chemistry, Veer Narmad South Gujarat University, India have designed and synthesized azole scaffolds (a series of A series of (E)-5-(4-((Z)-4-substitutedbenzylidene-2-thienylmethylene-5-oxo- 2-phenyl-4,5-dihydro-1H-imidazol-1-yl) benzylidene)thiazolidine-2,4-diones). Analysis of ligand-protein interactions was also conducted using molecular docking studies with (InhA) Enoyl-ACP reductase of the type II fatty acid synthase (FAS-II) system along with an investigation of the ADME properties of the scaffolds for use in oral medicine.

In vitro antimycobacterial activity was carried out against the M. tuberculosis H37Rv strain using Lowenstein-Jensen medium and antimicrobial activity against two gram-positive bacteria (S. aureus, S. pyogenes), two gram-negative bacteria (E. coli, P. aeruginosa) and three fungal species (C. albicans, A. niger, A. clavatus) using the broth microdilution method. In silico molecular docking studies were carried out using Glide (grid-based ligand docking) program incorporated in the Schrödinger molecular modeling package by Maestro 11.0 and ADME properties of synthesized compounds was performed using DruLito software.

Patel et al's investigations revealed 6 compounds that exhibited promising antimicrobial activity and 1 compound (labelled 3n) which showed very good antimycobacterial activity along with Gilde docking score (-8.864) and with the one violation in Lipinski's rule of five.

The researchers note that this is a preliminary result which gives directions for improving pharmaceutical derivatives for the treatment of tuberculosis. This article is Open Access. To obtain the article please visit http://www.eurekaselect.com/162197
-end-


Bentham Science Publishers

Related Tuberculosis Articles:

Old target, new mechanism for overcoming tuberculosis resistance
In strains of tuberculosis that have developed drug resistance mutations, researchers have identified a secondary pathway that can be activated to reinstate drug sensitivity.
Researchers use tiny 3-D spheres to combat tuberculosis
Researchers at the University of Southampton have developed a new 3-D system to study human infection in the laboratory.
How the tuberculosis vaccine may protect against other diseases
The tuberculosis vaccine is well known to help protect against other infectious diseases, as well as cancer, but the exact mechanisms have not been clear.
Tuberculosis bacteria find their ecological niche
An international team of researchers have isolated and analyzed genetically tuberculosis bacteria from several thousand patients from over a hundred countries.
Tuberculosis and HIV co-infection
The HIV virus increases the potency of the tuberculosis bacterium (Mtb) by affecting a central function of the immune system.
Scientists explain why Russian tuberculosis is the most infectious
Scientists conducted a large-scale analysis of the proteins and genomes of mycobacterium tuberculosis strains that are common in Russia and countries of the former Soviet Union and found features that provide a possible explanation for their epidemiological success.
Tuberculosis elimination at stake
New data released by the European Centre for Disease Prevention and Control and WHO/Europe show that an estimated 340,000 Europeans developed tuberculosis in 2014, corresponding to a rate of 37 cases per 100,000 population.
Curcumin may help overcome drug-resistant tuberculosis
New research indicates that curcumin -- a substance in turmeric that is best known as one of the main components of curry powder -- may help fight drug-resistant tuberculosis.
Stopping tuberculosis requires new strategy
Unless there is a major shift in the way the world fights tuberculosis -- from a reliance on biomedical solutions to an approach that combines biomedical interventions with social actions -- the epidemic and drug resistance will worsen, say researchers at Harvard T.H.
Tulane researchers working on new tuberculosis vaccine
Researchers at the Tulane National Primate Research Center are leading efforts to find a new vaccine for tuberculosis, one of the world's deadliest diseases.

Related Tuberculosis Reading:

Tuberculosis and Nontuberculous Mycobacterial Infections
by David Schlossberg (Editor)

Catching Breath: The Making and Unmaking of Tuberculosis (Bloomsbury Sigma)
by Kathryn Lougheed (Author)

Handbook of Tuberculosis
by Jacques H. Grosset (Editor), Richard E. Chaisson (Editor)

Spitting Blood: The history of tuberculosis
by Helen Bynum (Author)

Invincible Microbe: Tuberculosis and the Never-Ending Search for a Cure
by Jim Murphy (Author), Alison Blank (Author)

The Forgotten Plague: How the Battle Against Tuberculosis Was Won - And Lost
by Frank Ryan (Author)

The Remedy: Robert Koch, Arthur Conan Doyle, and the Quest to Cure Tuberculosis
by Avery

Clinical Tuberculosis: A Practical Handbook
by Peter D. O. Davies (Editor)

The Bioarchaeology of Tuberculosis: A Global View on a Reemerging Disease
by Charlotte Roberts (Author), Jane Buikstra (Author)

Well Diary...I Have Tuberculosis: Researching a Teenager's 1918 Sanatorium Experience
by Shirley Morgan (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.