Nav: Home

Harnessing multiple data streams and artificial intelligence to better predict flu

January 11, 2019

Influenza is highly contagious and easily spreads as people move about and travel, making tracking and forecasting flu activity a challenge. While the CDC continuously monitors patient visits for flu-like illness in the U.S., this information can lag up to two weeks behind real time. A new study, led by the Computational Health Informatics Program (CHIP) at Boston Children's Hospital, combines two forecasting methods with machine learning (artificial intelligence) to estimate local flu activity. Results are published today in Nature Communications.

When the approach, called ARGONet, was applied to flu seasons from September 2014 to May 2017, it made more accurate predictions than the team's earlier high-performing forecasting approach, ARGO, in more than 75 percent of the states studied. This suggests that ARGONet produces the most accurate estimates of influenza activity available to date, a week ahead of traditional healthcare-based reports, at the state level across the U.S.

"Timely and reliable methodologies for tracking influenza activity across locations can help public health officials mitigate epidemic outbreaks and may improve communication with the public to raise awareness of potential risks," says Mauricio Santillana, PhD, a CHIP faculty member and the paper' senior author.

Learning about localized flu patterns

The ARGONet approach uses machine learning and two robust flu detection models. The first model, ARGO (AutoRegression with General Online information), leverages information from electronic health records, flu-related Google searches and historical flu activity in a given location. In the study, ARGO alone outperformed Google Flu Trends, the previous forecasting system that operated from 2008 to 2015.

To improve accuracy, ARGONet adds a second model, which draws on spatial-temporal patterns of flu spread in neighboring areas. "It exploits the fact that the presence of flu in nearby locations may increase the risk of experiencing a disease outbreak at a given location," explains Santillana, who is also an assistant professor at Harvard Medical School.

The machine learning system was "trained" by feeding it flu predictions from both models as well as actual flu data, helping to reduce errors in the predictions. "The system continuously evaluates the predictive power of each independent method and recalibrates how this information should be used to produce improved flu estimates," says Santillana.

Precision public health

The investigators believe their approach will set a foundation for "precision public health" in infectious diseases.

"We think our models will become more accurate over time as more online search volumes are collected and as more healthcare providers incorporate cloud-based electronic health records," says Fred Lu, a CHIP investigator and first author on the paper.
-end-
The work was funded by the Centers for Disease Control and Prevention (Cooperative Agreement PPHF 11797-998G-15) and the National Institute of General Medical Sciences of the NIH (R01GM130668).

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including 8 members of the National Academy of Sciences, 18 members of the National Academy of Medicine and 12 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Influenza Articles:

Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.
Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.
Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.
How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.
Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.
Mechanism to form influenza A virus discovered
A new study by Maria João Amorim's team, from the Gulbenkian Institute of Science, now reveals where the genomes of the influenza A virus are assembled inside infected cells.
Bat influenza viruses could infect humans
Bats don't only carry the deadly Ebola virus, but are also a reservoir for a new type of influenza virus.
New VaxArray publication on influenza neuraminidase quantification
InDevR Inc. announced publication of 'A Neuraminidase Potency Assay for Quantitative Assessment of Neuraminidase in Influenza Vaccines' in npj Vaccines.
Fighting mutant influenza
Another flu season is here, which means another chance for viruses to mutate.
Influenza vaccine delays are a problem for pediatricians
Uptake of influenza vaccine among children is low compared to other childhood vaccines, and missed opportunities for vaccination play an important role in this low uptake.
More Influenza News and Influenza Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.