Core design strategy for fire-resistant batteries

January 11, 2021

All-solid-state batteries are the next-generation batteries that can simultaneously improve the stability and capacity of existing lithium batteries. The use of non-flammable solid cathodes and electrolytes in such batteries considerably reduces the risk of exploding or catching fire under high temperatures or external impact and facilitates high energy density, which is twice that of lithium batteries. All-solid-state batteries are expected to become a game changer in the electric vehicle and energy storage device markets. Despite these advantages, the low ionic conductivity of solid electrolytes combined with their high interfacial resistance and rapid deterioration reduce battery performance and life, thus limiting their commercialization.

The Korea Institute of Science and Technology (KIST) is proud to announce that the research team of Dr. Sang-baek Park at the Center for Energy Materials Research, in collaboration with the research team of Professor Hyun-jung Shin of Sungkyunkwan University, has developed a breakthrough material design strategy that can overcome the problem of high interfacial resistance between the solid electrolyte and the cathode, which is an obstacle to the commercialization of all-solid-state batteries.

Unique physical phenomena occur at the interface where two different substances meet. Unlike the atoms inside the bulk of a substance, which hold hands with other atoms around themselves and form stable bonds, the atoms at the interface, having no neighboring atom of the same substance on one side, are likely to form a different atomic arrangement.

In all-solid-state batteries having a solid electrode-solid electrolyte interface, a phenomenon occurs that disturbs the atomic arrangement and limits charge transfer, thereby increasing resistance and accelerating deterioration. Methods of coating an appropriate material on the surface of the cathode and the electrolyte or inserting an intermediate layer are currently being studied to solve the above-mentioned problem. However, this further increases the costs and lowers the overall activity and energy density of the batteries.

In order to solve these problems, the KIST-Sungkyunkwan University joint research team first systematically identified the crystal structure of the material that directly affects the solid interface. Using epitaxial film technology (a semiconductor manufacturing technology) to grow a thin film along the direction in which the crystals of the substrate were formed, cathode films having different exposed crystal planes were obtained under varying conditions. The effect of the exposed crystal plane on the interface between the solid electrolyte and the cathode material was analyzed in detail, disregarding other factors such as particle size and contact area that could affect the result.

The results indicated that the leakage of the transition metal from the cathode material into the electrolyte was suppressed by the closely-packed structure of the exposed crystal plane, which improved the stability of the all-solid-state battery. In addition, when the interface of the crystals was arranged in parallel with the direction of movement of the electrons, the movement of ions and electrons along the crystals was not hindered, resulting in reduced resistance and improved output.

"This means that improving the cathode material itself by increasing the density of the crystal plane and adjusting the direction of the interface between the crystals can ensure high performance and stability," said Dr. Sang-baek Park, KIST. "We plan to accelerate the development of all-solid-state battery materials by overcoming the instability of the solid electrolyte and solid cathode interface and imparting improved ion-charge exchange characteristics through this study, which has investigated the mechanism of all-solid-state battery degradation."
This research was carried out as a major project of KIST with the support of the Ministry of Science and ICT (MSIT). The results of this study were published in the latest issue of "Nano Energy" (IF: 16.602, the highest rating of 4.299% by JCR), an international journal in the field of nanotechnology.

National Research Council of Science & Technology

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to