Brookhaven lab scientists stabilize platinum electrocatalysts for use in fuel cells

January 12, 2007

UPTON, NY - Platinum is the most efficient electrocatalyst for accelerating chemical reactions in fuel cells for electric vehicles. In reactions during the stop-and-go driving of an electric car, however, the platinum dissolves, which reduces its efficiency as a catalyst. This is a major impediment for vehicle-application of fuel cells.

Now, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have overcome this problem. Under lab conditions that imitate the environment of a fuel cell, the researchers added gold clusters to the platinum electrocatalyst, which kept it intact during an accelerated stability test. This test is conducted under conditions similar to those encountered in stop-and-go driving in an electric car. The research is reported in the January 12, 2007, edition of the journal Science.

Brookhaven's Chemistry Department researchers Junliang Zhang, Kotaro Sasaki, and Radoslav Adzic, along with Eli Sutter from Brookhaven's Center for Functional Nanomaterials, authored the research paper. "Fuel cells are expected to become a major source of clean energy, with particularly important applications in transportation," said coauthor Radoslav Adzic. "Despite many advances, however, existing fuel-cell technology still has drawbacks, including loss of platinum cathode electrocatalysts, which can be as much as 45 percent over five days, as shown in our accelerated stability test under potential cycling conditions. Using a new technique that we developed to deposit gold atoms on platinum, our team was able to show promise in helping to resolve this problem. The next step is to duplicate results in real fuel cells."

A hydrogen-oxygen fuel cell converts hydrogen and oxygen into water and, as part of the process, produces electricity. Platinum electrocatalysts speed up oxidation and reduction reactions. Hydrogen is oxidized when electrons are released and hydrogen ions are formed; the released electrons supply current for an electric motor. Oxygen is reduced by gaining electrons, and in reaction with hydrogen ions, water, the only byproduct of a fuel cell reaction, is produced.

In the unique method developed at Brookhaven, the researchers displaced a single layer of copper with gold on carbon-supported platinum nanoparticles. After being subjected to several sweeps of 1.2 volts, the gold monolayer transformed into three-dimensional clusters. Using x-rays as probes at Brookhaven's National Synchrotron Light Source, a scanning transmission microscope at Brookhaven's Center for Functional Nanomaterials, and electrochemical techniques in the laboratory, the scientists were able to verify the reduced oxidation of platinum and to determine the structure of the resulting platinum electrocatalyst with gold clusters, which helped them to gain an understanding of the effects of the gold clusters.

In the Brookhaven experiment, the platinum electrocatalyst remained stable with potential cycling between 0.6 and 1.1 volts in over 30,000 oxidation-reduction cycles, imitating the conditions of stop-and-go driving. "The gold clusters protected the platinum from being oxidized," Adzic said. "Our team's research raises promising possibilities for synthesizing improved platinum-based catalysts and for stabilizing platinum and platinum-group metals under cycling oxidation/reduction conditions."
This research is funded through the U.S. Department of Energy's Hydrogen Program, which implements the President's Hydrogen Fuel Initiative, a five-year program that began in 2003 to sponsor research, development, and demonstration of hydrogen and fuel cell technologies. Specifically, the funding derived from DOE's Office of Basic Energy Sciences and its Office of Energy Efficiency and Renewable Energy.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more:

DOE/Brookhaven National Laboratory

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to