Sunflower genome holds the promise of sustainable agriculture

January 12, 2010

Vancouver, BC - As agricultural land becomes increasingly valuable, the need to maximize its utilization increases and decisions about what crops to plant and where, become paramount.

The sunflower family includes a number of valuable food crops, with sunflower seed production alone valued at about $14 billion annually. Yet the sunflower family is the only one of a handful of economically important plant families where a reference genome is not available to enable the breeding of crops better suited to their growing environment or consumers tastes.

A new research project, largely funded by Genome Canada, Genome BC, the US Departments of Energy and Agriculture, and France's INRA (National Institute for Agricultural Research), will create a reference genome for the sunflower family - currently the world's largest plant family, containing 24,000 species of plants, including many crops, medicinal plants, horticulture plants and noxious weeds.

The US$10.5 million research project titled, Genomics of Sunflower, will use next-generation genotyping and sequencing technologies to sequence, assemble and annotate the sunflower genome and to locate the genes that are responsible for agriculturally important traits such as seed-oil content, flowering, seed-dormancy, and wood producing-capacity.

"The intent is to have the basis for a breeding program within four years," says project leader, Dr. Loren Rieseberg (University of British Columbia).

One of the potential applications of this research includes a hybrid variety of sunflower, grown as a dual-use crop. The wild Silverleaf species of sunflower, known for its tall, woody stalks that grow 10 to 15 feet tall and up to 4 inches in diameter in a single season, could be crossbred with the commercially valuable sunflower plant that produces high quality seeds, capitalizing on the desirable traits of both species.

"The seeds would be harvested for food and oil, while the stalks would be utilized for wood or converted to ethanol. As a dual-use crop it wouldn't be in competition with food crops for land," says project leader, Dr. Loren Rieseberg (University of British Columbia).

In addition, this fast growing annual crop will be highly drought resistant, thanks to desirable traits from the Silverleaf variety, and would therefore be suitable for use in subsistence agriculture in places like Sub-Saharan Africa, as well as in much of North America.

Dr. Nolan Kane (University of British Columbia) is one of the co-investigators on the project and together with colleagues at INRA in France, is doing much of the bioinformatics for the genome project.

"The sunflower genome is 3.5 billion letters long - slightly larger than the human genome. The sunflower family is the largest plant family on earth - encompassing several important crops and weeds. Mapping its genome will create a very useful reference template for the entire plant family, which will enable us to work on closely related species," says Kane.

Dr. Steve Knapp (University of Georgia) is another co-investigator on the project, whose work includes genetic mapping for desirable traits such as wood formation, as well as the development of germplasm for breeding. "The complete sequence will give us a full draft of the genome and eliminate the arduous one at a time process that we have been using up until this point," he says.

"Genome BC is very pleased to support this innovative project, which will capitalize on Canada's strong genomics infrastructure and leadership in Sunflower genomics, in collaboration with other experts worldwide," says Dr. Alan Winter, President and CEO of Genome BC. "The potential applications of this research are extremely important, both globally and locally."
-end-
About Genome BC

Founded in 2000, Genome BC works collaboratively with government, universities and industry as the catalyst for a genomics-driven life sciences cluster with significant social and economic benefits for the Province and Canada. The organization's research portfolio, over $410 million since inception, includes 74 projects and technology platforms focused on areas of strategic importance to British Columbia such as human health, forestry, fisheries, bioenergy, mining, agriculture, and the environment. Genome BC programs are funded by Genome Canada, the Provincial Government of British Columbia, Western Economic Diversification Canada and other public and private partners.

For more information about Genome BC, visit www.genomebc.ca

Genome BC

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.