VTT: One-third of car fuel consumption is due to friction loss

January 12, 2012

No less than one third of a car's fuel consumption is spent in overcoming friction, and this friction loss has a direct impact on both fuel consumption and emissions. However, new technology can reduce friction by anything from 10% to 80% in various components of a car, according to a joint study by VTT Technical Research Centre of Finland and Argonne National Laboratory (ANL) in USA. It should thus be possible to reduce car's fuel consumption and emissions by 18% within the next 5 to 10 years and up to 61% within 15 to 25 years.

There are 612 million cars in the world today. The average car clocks up about 13,000 km per year, and in the meantime burns 340 litres of fuel just to overcome friction, costing the driver EUR 510 per year.

Of the energy output of fuel in a car engine, 33% is spent in exhaust, 29% in cooling and 38% in mechanical energy, of which friction losses account for 33% and air resistance for 5%. By comparison, an electric car has only half the friction loss of that of a car with a conventional internal combustion engine.

Annual friction loss in an average car worldwide amounts to 11,860 MJ: of this, 35% is spent in overcoming rolling resistance in the wheels, 35% in the engine itself, 15% in the gearbox and 15% in braking. With current technology, only 21.5% of the energy output of the fuel is used to actually move the car; the rest is wasted.

Worldwide savings with new technology

A recent VTT and ANL study shows that friction in cars can be reduced with new technologies such as new surface coatings, surface textures, lubricant additives, low-viscosity lubricants, ionic liquids and low-friction tyres inflated to pressures higher than normal.

Friction can be reduced by 10% to 50% using new surface technologies such as diamond-like carbon materials and nanocomposites. Laser texturing can be employed to etch a microtopography on the surface of the material to guide the lubricant flow and internal pressures so as to reduce friction by 25% to 50% and fuel consumption by 4%. Ionic liquids are made up of electrically charged molecules that repel one another, enabling a further 25% to 50% reduction in friction.

In 2009, a total of 208,000 million litres of fuel was burned in cars worldwide just to overcome friction; this amounts to 7.3 million TJ (terajoules) of energy. Theoretically, introducing the best current technological solutions in all of the world's cars could save EUR 348,000 million per year; the best scientifically proven solutions known today could save EUR 576,000 million per year, and the best solutions to emerge over the next 10 years could save EUR 659,000 million per year.

Realistically, though, over a period of 5 to 10 years of enhanced action and product development measures could be expected to enable savings of 117,000 million litres in fuel consumption per year, representing an 18% reduction from the present level. Furthermore, in realistic terms, carbon dioxide emissions could be expected to decrease by 290 million tonnes per year and financial savings to amount to EUR 174,000 million per year in the short term.

Drivers can influence fuel consumption

A driver can significantly influence the fuel consumption of his or her car. A reduction of 10% in driving speed, e.g. from 110 km/h to 100 km/h, translates into a 16% saving in fuel consumption. Slower speeds also allow for higher tyre pressures; an increase from 2 bar to 2.5 bar can translate into a 3% saving in fuel consumption.

VTT and ANL calculated friction loss in cars worldwide using a method that incorporated total crude oil consumption and fuel consumption of cars, the energy consumption of an average car, and the energy that an average car uses to overcome friction.

Friction losses were accounted for in the subsystems of a car - tyres, engine, gearbox, brakes - and also in its components, such as gears, bearings, gaskets and pistons. The friction losses caused at friction points and lubrication points were also considered.

The study was conducted at the Metal Products and Mechanical Engineering strategic competence cluster in the DEMAPP programme, co-ordinated by FIMECC Oy, where practical solutions for minimising friction loss are also being developed. The study was funded by the Finnish Funding Agency for Technology and Innovation (Tekes), VTT and FIMECC Oy, and the Argonne National Laboratory, Department of Energy (Chicago, USA).

The recent research report on friction loss in cars and the potential for reducing energy consumption and carbon dioxide emissions was published in the Tribology International scientific journal. The article can be accessed here: http://dx.doi.org/10.1016/j.triboint.2011.11.022
-end-
For more information, please contact:

VTT Technical Resarch Centre of Finland
Research Professor
Kenneth Holmberg
Tel. +358 40 544 2285
kenneth.holmberg@vtt.fi

Argonne National Laboratory, USA
Ali Erdemir
Argonne Distinguished Fellow
Tel. +1 630 853 1363
erdemir@anl.gov

Further information about VTT

Olli Ernvall, Senior Vice President, Communications
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
www.vtt.fi

VTT Technical Research Centre of Finland

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.