Malaria infection depends on number of parasites, not number of mosquito bites

January 12, 2017

For the first time, researchers have shown that the number of parasites each mosquito carries influences the chance of successful malaria infection.

The finding has implications for vaccine development and studies into how the disease spreads in the field.

The findings, from scientists at Imperial College London, may also explain why the only registered malaria vaccine, RTS,S, has had only partial efficacy in recent trials.

Malaria is spread when mosquitoes bite humans and release microscopic parasites, which live in the salivary glands of the mosquitoes, into the person's bloodstream.

The parasites then travel to the liver, where they mature and multiply for 8-30 days before spreading throughout the bloodstream and causing the symptoms of malaria.

Not every infectious mosquito bite will result in malaria. To determine the intensity of malaria transmission, researchers and international organisations like the World Health Organisation currently rely on a measure called the entomological inoculation rate (EIR): the average number of potentially infectious mosquito bites per person per year.

However, this does not take into account how infectious each of those bites may be - each bite is considered equally infectious. Previous studies using needle-injected parasites have suggested this may not be the case, but there have been no comprehensive studies using biting mosquitoes, which more accurately reflect real-world scenarios.

Now, in a study funded by the PATH Malaria Vaccine Initiative and the Medical Research Council, published in the journal PLOS Pathogens, researchers have determined that the number of parasites each individual mosquito carries influences whether a person will develop malaria. Some mosquitoes can be 'hyperinfected', making them particularly likely to pass on the disease.

In studies in mice, the researchers determined that the more parasites present in a mosquito's salivary glands, the more likely it was to be infectious, and also the faster any infection would develop.

Study co-author Dr Andrew Blagborough, from the Department of Life Sciences at Imperial, said: "These findings could have significant implications for public health. We have shown that the concept of relying on the number of bites alone to predict malarial burden is flawed, and has probably hampered the successful use of control measures and the development of effective vaccines.

"It is surprising that the relationship between parasite density and infectiousness has not been properly investigated before, but the studies are quite complex to carry out."

The team set up repeated cycles of infection, so that groups of infected mosquitoes containing variable numbers of parasites repeatedly bit sedated mice, transmitting malaria to them under a range of transmission settings.

This allowed them to track how many individual parasites different mosquitoes harboured, how many mice were infected as a result of exposure to them, and how long it took the mice to develop malaria.

By conducting further studies with mice and human volunteers, the team were also able to explain why the malaria vaccine RTS,S is effective only around 50 percent of the time, and why any protection rapidly drops off after three years.

The vaccine was less effective when mice or humans were bitten by mosquitoes carrying a greater number of parasites. The researchers think this is because the vaccine can only kill a certain proportion of the parasites, and is overwhelmed when the parasite population is too large.

All malaria-affected regions will have a mix of mosquitoes carrying different parasite amounts. Dr Blagborough said: "The majority of mosquitoes in the wild are either uninfected or infected at quite low levels, but some individual mosquitoes are regularly very highly infected.

"As the levels of malaria drop in an area due to the successful use of interventions, the number of these hyperinfected mosquitoes is expected to drop - but they're not totally prevented unless the intervention is very powerful."

Study co-author Dr Thomas Churcher, from the MRC Centre for Outbreak Analysis and Modelling at Imperial, said: "Vaccine development has come a long way, and this new insight should help future vaccine studies to be tested more rigorously.

"However, in the end, it is unlikely that one magic bullet will eradicate malaria, and we should continue to seek and apply combinations of strategies for reducing the burden of this disease."

Dr Morvern Roberts, programme manager for global infections at the Medical Research Council who funded the research, said: "Researchers have long wondered whether the more malaria parasites in a mosquito's mouthparts, the more likely they are to infect a host with the disease. No one has been able to demonstrate this until now but the authors of this paper have shown that this is the case in both mouse models and in humans.

"As they suggest, this knowledge is extremely important to take into account when trying to develop vaccines for malaria and other vector-borne diseases."
-end-


Imperial College London

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.