Fish lightly to keep snapper on the reef

January 12, 2017

Fishing is fundamentally altering the food chain in coral reefs and putting extra pressure on top-level predator fish, according to new research.

Fish such as Snapper and Grouper sit at the top of the food chain and are highly sought-after in restaurants the world over, commanding a high price in fish markets and supporting the livelihoods of many fishing communities across the Tropics - but the coral reefs they inhabit are under threat.

Scientists have looked at 253 coral reef sites across nine countries or jurisdictions in the Indian Ocean, from heavily fished reefs in Kenya to unfished reefs in the remote Chagos Archipelago.

They found that top-level predator fish were easily overfished and require a different approach if they are to be conserved, or are to be part of long-term fish catches.

Their findings published in the journal Current Biology, show that these food chains are altered the most in heavily-fished areas because even low level fish, such as parrotfish, are heavily exploited. In these systems, researchers found sea urchins were replacing fish at the bottom of the food web, bolstering food for mid-tier species of fish. Fisheries in these situations struggle to maintain yields, and the ecosystem is fundamentally altered.

However, in coral reefs that are lightly fished, the typical ecosystem pyramid develops an hourglass shape implying that energy may pass from the bottom to the top of the food chain rapidly. This suggests lightly fished systems are well placed to both conserve top level fish, and support carefully regulated fisheries targeting these species.

These insights cast a new light on fisheries management and conservation policy, filling an important gap in our understanding of fisheries targets on coral reefs.

Lead author, Professor Nick Graham of the Lancaster Environment Centre, Lancaster University, said: "Given the fragile state of the world's coral reefs it is important to understand how human activity, such as fishing, impacts upon coral reef ecology. Coral reefs are home to 30 percent of marine species, they play a key role in food security in the Tropics and are iconic, fascinating ecosystems in their own right."

"Our study has shown these top-level predatory fish are only likely to be viable in overall lightly fished reefs, for example the Great Barrier Reef. To both conserve these top-of-the-food-chain fish, and to maintain the fisheries which depend upon them, overall fish biomass on the coral reef needs to remain high."

"Previous research by our team has identified target levels of biomass which sustain fisheries for a diverse array of species, while maintaining ecosystem structure. This current work identifies a higher target for fisheries that aim to target predatory fish. Key to these targets is the objective of maintaining the ecosystem at the same time as supporting fisheries and livelihoods."

Dr Aaron MacNeil of the Australian Institute of Marine Science, and Dalhousie University said: "These results give us better insight into how we can maintain the integrity of reef ecosystems while sustaining the livelihoods of local fishers. Understanding how humans alter energy flows within coral reefs gives us another tool for deciding how much fish we can safely take for ourselves. And by accounting for the energy stored in the system, we can choose to allocate effort to different parts of the food web and maximise overall catch and function."
* Partners in the research included: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Australia; Wildlife Conservation Society, Marine Programs, Bronx, USA; Australian Institute of Marine Science, Australia; Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada; Department of Parks and Wildlife, Kensington, Perth, Australia; School of Plant Biology, Oceans Institute, University of Western Australia, Australia.

The research was funded by the Western Indian Ocean Marine Science Association, the John D. and Catherine T. MacArthur Foundation, the Australian Research Council, the Leverhulme Trust, and the Royal Society.


Nick Graham:, UK - +44 (0)7479438914
Aaron MacNeil:, Canada - +1 902 4021273

Graham, Nicholas A. J. et al.: "Human disruption of coral reef trophic structure"
DOI: 10.1016/j.cub.2016.10.062

Lancaster University

Related Coral Reefs Articles from Brightsurf:

The cement for coral reefs
Coral reefs are hotspots of biodiversity. As they can withstand heavy storms, they offer many species a safe home.

Palau's coral reefs: a jewel of the ocean
The latest report from the Living Oceans Foundation finds Palau's reefs had the highest coral cover observed on the Global Reef Expedition--the largest coral reef survey and mapping expedition in history.

Shedding light on coral reefs
New research published in the journal Coral Reefs generates the largest characterization of coral reef spectral data to date.

Uncovering the hidden life of 'dead' coral reefs
'Dead' coral rubble can support more animals than live coral, according to University of Queensland researchers trialling a high-tech sampling method.

Collaboration is key to rebuilding coral reefs
The most successful and cost-effective ways to restore coral reefs have been identified by an international group of scientists, after analyzing restoration projects in Latin America.

Coral reefs show resilience to rising temperatures
Rising ocean temperatures have devastated coral reefs all over the world, but a recent study in Global Change Biology has found that reefs in the Eastern Tropical Pacific region may prove to be an exception.

Genetics could help protect coral reefs from global warming
The research provides more evidence that genetic-sequencing can reveal evolutionary differences in reef-building corals that one day could help scientists identify which strains could adapt to warmer seas.

Tackling coral reefs' thorny problem
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have revealed the evolutionary history of the crown-of-thorns starfish -- a predator of coral that can devastate coral reefs.

The state of coral reefs in the Solomon Islands
The ''Global Reef Expedition: Solomon Islands Final Report'' summarizes the foundation's findings from a monumental research mission to study corals and reef fish in the Solomon Islands and provides recommendations on how to preserve these precious ecosystems into the future.

Mysterious glowing coral reefs are fighting to recover
A new study by the University of Southampton has revealed why some corals exhibit a dazzling colorful display, instead of turning white, when they suffer 'coral bleaching' -- a condition which can devastate reefs and is caused by ocean warming.

Read More: Coral Reefs News and Coral Reefs Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to