BLAST: Greater speed, accuracy in recognizing brain injury

January 12, 2017

ARLINGTON, Va.--Modern body armor better protects warfighters against shrapnel from explosive blasts. However, they still face a hidden threat--the resulting blast pressure and shock wave that could cause traumatic brain injury (TBI).

To fight this invisible, insidious adversary, the Office of Naval Research (ONR) is sponsoring the development of a portable, three-part system that can measure blast pressure, establish injury thresholds for the brain and analyze potential TBI symptoms. It's called Blast Load Assessment Sense and Test--BLAST, for short.

"A system like BLAST is vitally important because it can help recognize the signs of TBI early and tell warfighters they might need medical attention," said Dr. Timothy Bentley, a program manager overseeing the research for ONR's Warfighter Performance Department. "This reduces the likelihood of someone enduring multiple blasts and suffering more serious brain injury. BLAST also is unique for its unique suite of technology."

Department of Defense doctrine requires all those within 50 meters (approximately 165 feet) of an explosion to "stand down" for 24 hours and undergo a mandatory medical checkup. Bentley said this approach presents two major challenges--(1) some forward operating bases are only 100 meters (approximately 330 feet) across, so half of the personnel would need to stand down after an explosion, and (2) 24 hours isn't enough time for a regular medical exam to detect signs of even mild TBI.

BLAST uses coin-sized sensors that are tough enough to survive an explosion, can be worn on helmets and body armor and are able to record blast pressure. This pressure can be downloaded with a specialized scanner--design possibilities include a handheld barcode-style scanner or a stationary one modeled after airport metal detectors. By using a special algorithm to convert data into a "go or no-go" injury threshold, BLAST indicates if exposed warfighters can stay in the fight, or need a TBI-focused medical exam with the third component: a neurofunctional assessment tool.

This assessment tool is sized like a computer mouse, fits in the palm of the hand, and emits vibrations to stimulate fingertip sensations and assess brain health. By testing whether or not warfighters feel these vibrations, administered in a variety of patterns, a medic or corpsman can decide if someone exhibits TBI symptoms and needs to stand down.

"BLAST sensors can provide valuable blast pressure data that can be used to assess the possibility of TBI," said Dr. Amit Bagchi, a scientist at the Naval Research Laboratory, which is developing the physical sensors. "The more data we have, the better we can predict the presence of TBI."

"Together, the components of BLAST can enable us to designate a pressure threshold number for when someone is at risk for TBI and needs to stand down for more advanced testing or medical care," said Dr. Laila Zai, a scientist with ARA, a research and engineering company helping to develop BLAST's algorithm and neurofunctional assessment tool. "Think of a speedometer. Whether you're going too fast or slow depends on road conditions, and is indicated by the speed limit. BLAST determines a safe 'speed' for the brain."

BLAST sensors currently are being tested in laboratories using electrical shocks to simulate blasts of varying size and intensity. Within the next year and a half, Bentley said, the system should be tested on field mannequins and then by Marines completing breacher training--overcoming obstacles such as walls and doors using explosives.

BLAST is part of ONR's Future Naval Capability--a science and technology program aimed at developing and transitioning cutting-edge technology products to Navy and Marine Corps acquisition managers within a three- to five-year timeframe.
-end-


Office of Naval Research

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.