Nav: Home

Fighting viruses to improve agriculture

January 12, 2017

RIVERSIDE, Calif. -- A University of California, Riverside researcher is leading a team that will receive $300,000 over two years to study the life cycles of viruses that are harmful to humans and agricultural plants.

The project by A.L.N. Rao, a professor of plant pathology and microbiology, is one of 15 funded by the University of California's Multicampus Research and Programs Initiatives. He is the only professor from UC Riverside who is a principal investigator on one of the grants.

His research focuses on viruses, which contain at least two components: the capsid (a protein shell), and a genome, consisting of either DNA or RNA. Although one of the most important roles of a viral capsid is to protect its genome, it must also be capable of releasing its infectious nucleic acid into the cell.

The Rao-led team, which also includes researchers from UCLA and UC Irvine, are focused on the capsid portion of the virus. Their goal is to understand the factors that determine/regulate viral capsid dynamics using state-of-the art genetic, molecular, biochemical and nanotechnology approaches so they can formulate new approaches to curb viral infections.

As a first step, they say it is crucial to demonstrate how RNA content determines the stability of a viral capsid. This means generating in a test tube and in an organism a range of structurally identical capsids that contain distinctly different RNA lengths and sequences.

The results could lead to genetic engineering of plants to improve their health. For example, several years ago, the papaya crops in Hawaii were saved from papaya ringspot virus destruction by simply transforming plants to express the viral capsid protein.

Devastating viral epidemics and pandemics are usually thought of in terms of viruses such as Influenza or Ebola in mammals. But parallel instances of disease caused by plant viruses, though less familiar, can also cause widespread devastation. For example, in the mid-1990s, a viral infection of cassava, led to widespread famine and death in Africa.
-end-
The Multicampus Research and Programs Initiatives grants, totaling more than $17 million, were announced in December. The winning research projects were selected by peer review from a pool of 97 applications in a highly competitive grant review process.

Through the initiative, UC's Office of the President provides grants to UC faculty who: advance cutting-edge research in topics important to UC, the people of California and to the state's environment and economy; increase UC's competitiveness in attracting extramural funding; and train UC students in emerging fields of scholarship.

University of California - Riverside

Related Rna Articles:

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.
Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.
A new approach to reveal the multiple structures of RNA
The key of the extraordinary functionality of ribonucleic acid, better known as RNA, is a highly flexible and dynamic structure.
RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.
New RNA molecules may play a role in aging
Using a new sequencing method, this class of previously invisible RNA molecules were found to be abundantly expressed.
AI reveals nature of RNA-protein interactions
A deep learning tool could help in structure-based drug discovery.
Uncovering the principles behind RNA folding
Using high-throughput next-generation sequencing technology, Professor Julius Lucks found similarities in the folding tendencies among a family of RNA molecules called riboswitches, which play a pivotal role in gene expression.
A new, unified pathway for prebiotic RNA synthesis
Adding to support for the RNA world hypothesis, Sidney Becker and colleagues have presented what's not been shown before -- a single chemical pathway that could generate both the purine and pyrimidine nucleosides, the key building blocks of RNA.
More RNA News and RNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.