New research explores the effect of winter dormancy on cold-blooded cognition

January 12, 2017

Unlike mammals, amphibians who rest up during the winter do not forget the memories they made beforehand - this is the surprising discovery of new scientific research.

The new study, published in the journal Scientific Reports, reveals that the processes involved in winter dormancy may have a fundamentally different impact on memory in amphibians and mammals.

Researchers from the University of Lincoln, UK, and two universities in Vienna, Austria, discovered that brumation - the period of winter dormancy that is observed in cold-blooded animals, similar to the process of hibernation in mammals - does not seem to adversely affect the memory of salamanders.

This key finding differs dramatically from previous studies of mammals, which show that hibernation often causes animals to forget some of the memories they formed prior to their period of inactivity.

Dr Anna Wilkinson, from the School of Life Sciences at the University of Lincoln, led the study in collaboration with colleagues from the University of Vienna and the University of Veterinary Medicine Vienna.

Dr Wilkinson said: "Long-term torpor is an adaptive strategy that allows animals to survive harsh winter conditions. However, the impact that this has on cognitive function is poorly understood. We know that in mammals, hibernation causes reduced synaptic activity and can cause them to lose some of the memories they formed prior to hibernation, but the effect of brumation on memory has been unexplored, until now."

The researchers trained twelve salamanders to navigate a maze and remember the path they needed to take to reach a reward. Half of the animals were then placed into brumation for 100 days, while the other half remained under normal keeping conditions.

A post-brumation memory retention test revealed that animals from both conditions recalled how to navigate the maze.

"We demonstrated that each of the animals solved the task using memory, rather than sensory cues such as smell of the reward, and we're therefore confident that the period of brumation did not impact on their ability to remember," Anne Hloch, another author on the paper explained. "For these animals, memory retention is essential for survival as it allows them to recall important information about the environment, such as the location of food and the presence of predators."

The researchers suggest that the differences in retention observed between mammals and amphibians could be caused by their different learning and memory processes, or the nature of their torpor. Mammals regularly rouse from their hibernation and enter intervals of sleep, whereas cold-blooded animals are dependent on the temperature of their surroundings during brumation and are therefore forced to stay torpid until temperatures rise.
-end-


University of Lincoln

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.