Nav: Home

Simple fats and amino acids to explain how life began

January 12, 2017

DNA, RNA, proteins, membranes, sugars, ... cells are made up of all kinds of components. In biology, and in the studies dealing with the origin of life specifically, it is very common to focus on one of these molecules and put forward hypotheses on how life originated by analysing the specific mechanisms related to it. "Basically, these studies are looking for the 'molecule of life', in other words, they set out to establish which was the most important molecule in making this milestone happen," said Kepa Ruiz-Mirazo, researcher in the Biophysics Unit and of the UPV/EHU's Department of Logic and Philosophy of Science. However, bearing in mind that "life involves activity among a huge variety of molecules and components, a change of approach has been taking place in recent years and research that takes into account various molecules at the same time is gaining strength," he added. Besides emerging in favour of this fresh approach, Ruiz-Mirazo's group, in collaboration with the University of Montpellier, through an internship of the UPV/EHU PhD student Sara Murillo-Sánchez, has been able to show that interaction exists between some molecules and others. "Our group has expertise in research into membranes that are created in prebiotic environments, in other words, in the study of the dynamics that fatty acids, the precursors of current lipids, may have had. The Montpellier group for its part specialises in the synthesis of the first peptides. So when the knowledge of each group is put together, and when we experimentally blended the fatty acids and the amino acids, we could see that there was a strong synergy between them". As they were able to see, the catalysis of the reaction took place when the fatty acids formed compartments. As they are in an aqueous medium, and due to the hydrophobic nature of lipids, they tend to join with each other and form closed compartments; in other words, they take on the function of a membrane; "at that time the membranes obviously weren't biological but chemical ones," explained Ruiz-Mirazo. In their experiments they were able to see that the conditions offered by these membranes are favourable for amino acids. "The Montpellier group had the prebiotic reactions of the formation of dipeptides very well characterised, so they were able to see that this reaction took place more efficiently in the presence of fatty acids," he added.

Bottom upwards, recreating evolution using simple molecules Besides demonstrating the synergy between fatty acids and amino acids, Ruiz-Mirazo believes it is very important to have conducted the study using basic chemical components, in other words, molecular precursors. "Life emerged out of these basic molecules; therefore, to study its origin we cannot start from the complex phospholipids that are found in today's membranes. We have demonstrated the formation of the first coming together and formation of chains on the basis of molecular precursors. Or to put it another way, we have demonstrated that it is possible to achieve diversity and complexity in biology by starting from chemistry." In his studies, in addition to the experimental work, Ruiz-Mirazo is working in another two spheres so in the end he is studying the origin of life from three pillars or perspectives: "firstly, we have the experimental field; another is based on theoretical models and computational simulations, which we use to analyse the results obtained in the experiments, and the third is a little broader, because we are studying from the philosophical viewpoint what life is, the influence that the conception held about life exerts on the experimental field, since each conception leads you to carry out a specific type of experiment," he explained. "These three methodologies mutually feed each other: an idea that may emerge in the philosophical analysis leads you to carry out a new simulation, and the results of the simulations mark out the path for designing the experiments. Or the other way round. Most likely we will never manage to find the answer to how life began, but we are working on it: all of us living beings on Earth have the same origin and we want to know how it happened".

Additional information Kepa Ruiz-Mirazo is a full-time UPV/EHU researcher in the Prebiotic Membranes research group of the Biophysics Unit of the Faculty of Science and Technology, and in the Philosophy of Biology research group of the Department of Logic and Philosophy of Science-IAS of the Department of Logic and the Philosophy of Science of the Faculty of Education, Philosophy and Anthropology. This research has been conducted in collaboration with the Institut des Biomolécules Max Mousseron (IBMM) of the CNRS and the University of Montpellier. Ruiz-Mirazo's group specialises in prebiotic lipids and membranes, and that of Montpellier works to characterize the reactions in the formation of small peptides on the basis of amino acids in prebiotic environments.

Bibliographical reference: Murillo-Sánchez, S., Beaufils, D., González Mañas, J. M., Pascal, R. & Ruiz-Mirazo, K. (2016): Fatty acids' double role in the prebiotic formation of a hydrophobic dipeptide. Chemical Science 7: 3406-3414 (online - 09 Feb 2016). DOI 10.1039/C5SC04796J.
-end-


University of the Basque Country

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".