Nav: Home

Profitable coral reef fisheries require light fishing

January 12, 2017

New York (January 12, 2017) - Fishing is fundamentally altering the food chain in coral reefs and putting dual pressures on the valuable top-level predatory fish, according to new research by the Wildlife Conservation Society, Lancaster University, and other organizations.

Fish that sit at the top of the food chain, such as such as snapper and groupers, are highly sought-after in restaurants the world over, commanding a high price in fish markets and supporting fishing communities across the tropics, but maintaining them may be challenged by the complexity of the coral reef food web, according to a newly published study titled "Human disruption of coral reef trophic structure" in the journal Current Biology.

"Given the fragile state of the world's coral reefs it is important to understand how human activity such as fishing impacts upon coral reef ecology," said lead author Nick Graham of the Lancaster Environment Centre, Lancaster University. "Our study has shown these top-level predatory fish are only likely to be viable in overall lightly fished reefs, for example the Great Barrier Reef. To both conserve these top-of-the-food-chain fish, and to maintain fisheries for them, overall fish biomass on the coral reef needs to remain high.

Studying a large array of reefs in the Indian Ocean, the researchers found that reef food webs are altered in ways that can undermine valued species by bottom-up losses of available food as much as the top-down forces of fishing. These predators feed on other moderately sought fisheries species, such as parrotfish and surgeonfish, which appear both slow to recover from fishing but are also replaced by sea urchins as grazers, which are not the prey of these valued predators.

Consequently, replacing fish at the bottom of the food web with sea urchins may bolster the mid-tier species of fish but at a cost to the most prized predators. Fisheries in these situations struggle to maintain their preferred catch and pricey yields. The ecosystem is fundamentally altered in ways that may undermine the potential to recover their value.

The team also found that an hourglass food web shape emerges in what is frequently predicted to be an ecosystem pyramid, implying that energy in the ecosystem may accumulate at the top of the food chain by high productivity but low biomass of the mid-tier predators. This suggests lightly fished systems support these valuable top-level fish if lightly fished but fishing lower in the food chain can cause a collapse of the top tier predators. This is also most likely to occur when these mid-tier predators are fished and when herbivorous fish are replaced by sea urchins at the bottom of the food chain. Sea urchins proliferate when their mid-tier predators are fished even lightly.

These ecological insights cast a new light on how to manage tropical fisheries and policies for maintaining intact food webs, filling an important gap in our understanding of fisheries targets on coral reefs.

"Previous research by our team has identified target levels of biomass which sustain fisheries for a diverse array of species, while maintaining ecosystem structure. This current work identifies a higher target for fisheries that aim to target predatory fish and focus on high value fisheries," said Dr. Tim McClanahan, Senior Conservation Zoologist of WCS and a study co-author. "Key to these targets is the objective of maintaining the ecosystem at the same time as supporting fisheries and livelihoods."

"Understanding how humans alter energy flows within coral reefs gives us another tool for deciding how much fish we can safely take for ourselves," said Dr. Aaron MacNeil of the Australian Institute of Marine Science, and Dalhousie University. "And by accounting for the energy stored in the system, we can choose to allocate effort to different parts of the food web and maximize overall catch and function."

McClanahan added: "Millions of people in coastal communities around the world rely on natural resources from coral reefs and other marine ecosystems. Studies such as this one that determine how much fishing these ecosystems can sustain are more important than ever if we are to keep coral reefs fully functional for sustainable use."
-end-
Organizational partners in the study are: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Australia; Wildlife Conservation Society, Marine Programs, Bronx, USA; Australian Institute of Marine Science, Australia; Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada; Department of Parks and Wildlife, Kensington, Perth, Australia; School of Plant Biology, Oceans Institute, University of Western Australia, Australia.

The research was supported by the Western Indian Ocean Marine Science Association, the John D. and Catherine T. MacArthur Foundation, the Australian Research Council, the Leverhulme Trust, and the Royal Society.

WCS (Wildlife Conservation Society)

MISSION: WCS saves wildlife and wild places worldwide through science, conservation action, education, and inspiring people to value nature. To achieve our mission, WCS, based at the Bronx Zoo, harnesses the power of its Global Conservation Program in nearly 60 nations and in all the world's oceans and its five wildlife parks in New York City, visited by 4 million people annually. WCS combines its expertise in the field, zoos, and aquarium to achieve its conservation mission. Visit: newsroom.wcs.org Follow: @WCSNewsroom. For more information: 347-840-1242.

The John D. and Catherine T. MacArthur Foundation supports creative people, effective institutions, and influential networks building a more just, verdant, and peaceful world. MacArthur is placing a few big bets that truly significant progress is possible on some of the world's most pressing social challenges, including over-incarceration, global climate change, nuclear risk, and significantly increasing capital for the social sector. In addition to the MacArthur Fellows Program, the Foundation continues its historic commitments to the role of journalism in a responsible and responsive democracy; the strength and vitality of our headquarters city, Chicago; and generating new knowledge about critical issues.

Wildlife Conservation Society

Related Coral Reefs Articles:

3-D printed coral could help endangered reefs
Threats to coral reefs are everywhere--rising water temperatures, ocean acidification, coral bleaching, fishing and other human activities.
Actions to save coral reefs could benefit all ecosystems
Scientists say bolder actions to protect the world's coral reefs will benefit all ecosystems, human livelihoods and improve food security.
Coral reefs shifting away from equator
Coral reefs are retreating from equatorial waters and establishing new reefs in more temperate regions, according to new research in the journal Marine Ecology Progress Series.
Protecting coral reefs in a deteriorating environment
A new report examines novel approaches for saving coral reefs imperiled by climate change, and how local decision-makers can assess the risks and benefits of intervention.
Coral reefs can't return from acid trip
When put to the test, corals and coralline algae are not able to acclimatise to ocean acidification.
New eDNA technology used to quickly assess coral reefs
Scientists at the University of Hawai`i at Mānoa Department of Biology have developed a technique for measuring the amount of living coral on a reef by analyzing DNA in small samples of seawater.
Global warming disrupts recovery of coral reefs
The damage caused to the Great Barrier Reef by global warming has compromised the capacity of its corals to recover, according to new research published today in Nature.
Coral reefs near equator less affected by ocean warming
Ocean warming is threatening coral reefs globally, with persistent thermal stress events degrading coral reefs worldwide, but a new study has found that corals at or near the equator are affected less than corals elsewhere.
How sponges undermine coral reefs from within
Coral reefs are demolished from within, by bio-eroding sponges. Seeking refuge from predators, these sponges bore tunnels into the carbonate coral structures, thus weakening the reefs.
A glimmer of hope for the world's coral reefs
The future of the world's coral reefs is uncertain, as the impact of global heating continues to escalate.
More Coral Reefs News and Coral Reefs Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.