Nav: Home

Researcher discovers commonalities in brains of people with HD and PD

January 12, 2018

(Boston)--A new study strongly suggests that the brains of people who have died of Huntington's disease (HD) and Parkinson's disease (PD) show a similar response to a lifetime of neurodegeneration, despite being two very distinct diseases.

The findings, which appear in the journal Frontiers in Molecular Neuroscience, found that most of the genes perturbed in brains from both diseases are related to the same immune response and inflammatory pathways. Inflammation in the central nervous system has recently been shown to play a role in a number of different neurodegenerative diseases, including HD and PD, but this is the first direct comparison of these two distinct diseases.

Brains of individuals who died with Huntington's, Parkinson's or no neurological condition were analyzed using sequencing technology that provides a data readout of the activity of all genes in the genome. By comparing the data from the different groups, the researchers identified which genes show differences in their activity. By organizing and interpreting these genes, the researchers found an overall pattern of commonality between the two diseases. According to the researchers, the hypothesis that the brain experiences a similar response to disparate neurodegenerative diseases has exciting clinical implications. "These findings suggest that a common therapy might be developed to help mitigate the effects of different neurodegenerative diseases of the central nervous system" explained corresponding author Adam Labadorf, PhD, Director of the BU Bioinformatics Hub.

"Though no such treatment yet exists, this finding will lead to experiments to better understand the specific mechanisms of the inflammatory response in the neurodegenerating brain, which may in turn lead to new treatments."

Labadorf believes that at present, these findings are too preliminary to suggest new clinical treatments. However, as many anti-inflammatory drugs are already available, there may be a relatively short path to designing clinical trials for drugs that modulate the inflammatory response in people with neurodegenerative disease.

"While these findings are specific to HD and PD, these two diseases are sufficiently distinct to suggest that the observed pattern of differential gene activity may likely be observed in other neurodegenerative diseases of the central nervous system, including Alzheimer's disease and Chronic Traumatic Encephalophathy (CTE)."
-end-
Funding for this study was provided by grants from US National Institutes of Health (R01-S076843), Characterization of the Role of Cyclin G-associated Kinase in Parkinson Disease, (R01-NS073947), Epigenetic Markers in Huntington's Disease Brain, (R01-NS088538), An IPSc based platform for functionally assessing genetic and environmental Risk in PD, (U24-NS072026) National Brain and Tissue Resource for Parkinson's Disease and Related Disorders and the Jerry McDonald Huntington Disease Research Fund.

Boston University School of Medicine

Related Neurodegenerative Diseases Articles:

Researchers identify link between birth defect and neurodegenerative diseases
A new study has found a link between neurological birth defects in infants commonly found in pregnant women with diabetes and several neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases.
High school football players, 1956-1970, did not have increase of neurodegenerative diseases
A Mayo Clinic study published online today in Mayo Clinic Proceedings found that varsity football players from 1956 to 1970 did not have an increased risk of degenerative brain diseases compared with athletes in other varsity sports.
Researchers reveal how neurodegenerative diseases spread through the brain
Synapses, the place where brain cells contact one another, play a pivotal role in the transmission of toxic proteins.
Untangling a cause of memory loss in neurodegenerative diseases
In mice genetically engineered to mimic aspects of human tauopathy disorders, the researchers restored some of the learning and memory deficits by blocking caspase-2 activity, which suggests that some of the cognitive loss seen in tauopathies might be reversible.
New impetus for treatment neurodegenerative diseases
Twenty years ago, tumor necrosis factor (TNF) seemed a promising target in the treatment of brain diseases like multiple sclerosis or Alzheimer's Disease.
Study demonstrates role of gut bacteria in neurodegenerative diseases
Research has revealed that exposure to bacterial proteins called amyloid that have structural similarity to brain proteins may lead to an increase in clumping of proteins in the brain.
How do the bugs in your gut affect neurodegenerative and psychiatric diseases?
A growing body of scientific and medical evidence continues to shed light on the complex interaction between metabolic pathways affected by microrganisms living in the human gut and gene expression, immune function, and inflammation that can contribute to a range of cognitive, psychiatric, and neurodegenerative disorders.
Antioxidant therapies may help in the fight against neurodegenerative diseases
A new review examines the potential of antioxidant approaches for the treatment of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.
Promising results with new gene therapy approach for treating inherited neurodegenerative diseases
A new gene therapy approach designed to replace the enzyme that is deficient in patients with the inherited neurodegenerative disorders Tay-Sachs and Sandhoff diseases successfully delivered the therapeutic gene to the brains of treated mice, restored enzyme function, and extended survival by about 2.5-fold.
Could a new class of fungicides play a role in autism, neurodegenerative diseases?
Scientists at the UNC School of Medicine have found a class of commonly used fungicides that produce gene expression changes similar to those in people with autism and neurodegenerative conditions, including Alzheimer's disease and Huntington's disease.

Related Neurodegenerative Diseases Reading:

The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms
by Michael S. Wolfe PhD (Editor)

Neurodegenerative Diseases: Unifying Principles
by Jagan A Pillai (Author), Jeffrey L Cummings (Editor)

Neurodegenerative Diseases: Clinical Aspects, Molecular Genetics and Biomarkers
by Daniela Galimberti (Editor), Elio Scarpini (Editor)

Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases
by Tahira Farooqui (Editor), Akhlaq A. Farooqui (Editor)

The End of Alzheimer's: The First Program to Prevent and Reverse Cognitive Decline
by Dale Bredesen (Author)

Neurodegenerative Diseases: Clinical Aspects, Molecular Genetics and Biomarkers
by Daniela Galimberti (Editor), Elio Scarpini (Editor)

The Molecular Pathology of Neurodegenerative Disease
by Patrick A. Lewis (Author), Jennifer E. Spillane (Author)

Neuropathology of Neurodegenerative Diseases: A Practical Guide
by Cambridge University Press

Neurodegenerative Disease and Micronutrients: Prevention and Treatment
by CRC Press

Neurodegenerative Diseases: Pathology, Mechanisms, and Potential Therapeutic Targets (Advances in Neurobiology)
by Philip Beart (Editor), Michael Robinson (Editor), Marcus Rattray (Editor), Nicholas J. Maragakis (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".