Nav: Home

Quantum leap: computational approach launches new paradigm in electronic structure theory

January 12, 2018

EAST LANSING, Mich. -- A group of Michigan State University researchers specializing in quantum calculations has proposed a radically new computational approach to solving the complex many-particle Schrödinger equation, which holds the key to explaining the motion of electrons in atoms and molecules.

By understanding the details of this motion, one can determine the amount of energy needed to transform reactants into products in a chemical reaction, or the color of light absorbed by a molecule, and ultimately accelerate the design of new drugs and materials, better catalysts and more efficient energy sources.

The work, led by Piotr Piecuch, university distinguished professor in the Department of Chemistry and adjunct professor in the Department of Physics and Astronomy in the College of Natural Science, was published recently in Physical Review Letters. Also involved in the work are fourth-year graduate student J. Emiliano Deustua and senior postdoctoral associate Jun Shen. The group provides details for a new way of obtaining highly accurate electronic energies by merging the deterministic coupled-cluster and stochastic (randomly determined) Quantum Monte Carlo approaches.

"Instead of insisting on a single philosophy when solving the electronic Schrödinger equation, which has historically been either deterministic or stochastic, we have chosen a third way," Piecuch said. "As one of the reviewers noted, the essence of it is remarkably simple: use the stochastic approach to determine what is important and the deterministic approach to determine the important, while correcting for the information missed by stochastic sampling."

Solving the Schrödinger equation for the many-electron wave function has been a key challenge in quantum chemistry for decades. Anything other than a one-electron problem, such as a hydrogen atom, requires resorting to numerical methods, converted into sophisticated computer programs, such as those developed by Piecuch and his group. The main difficulty has been the intrinsic complexity of the electronic motion, which quantum chemists and physicists call "electron correlation."

The new idea is to use the stochastic methods to identify the leading wave function components and the deterministic coupled-cluster computations, combined with suitable energy corrections, to provide the missing information. The merging of deterministic and stochastic approaches as a general method of solving the many-particle Schrödinger equation may also impact other areas, such as nuclear physics.

"In the case of nuclei, instead of being concerned with electrons, one would use our new approach to solve the Schrödinger equation for protons and neutrons," Piecuch said. "The mathematical and computational issues are similar. Just like chemists want to understand the electronic structure of a molecule, nuclear physicists want to unravel the structure of the atomic nucleus. Once again, solving the many-particle Schrödinger equation holds the key."
-end-


Michigan State University

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Electron: From Beginner to Pro: Learn to Build Cross Platform Desktop Applications using Github's Electron
by Chris Griffith (Author), Leif Wells (Author)

Discover how to take your existing web development skills and learn how to create desktop applications for macOS, Windows, and Linux, using GitHub's Electron. Learn how to combine the power of Node.js and Chromium to provide a powerful development platform for creating web applications that break free from the browser.

Electron: From Beginner to Pro guides you through the capabilities that you have available to create desktop applications. Learn to use features like file system access, create native menus, OS-specific dialogs and more. The authors will show you how to package... View Details


Pushing Electrons
by Daniel P. Weeks (Author)

This brief guidebook assists you in mastering the difficult concept of pushing electrons that is vital to your success in Organic Chemistry. With an investment of only 12 to 16 hours of self-study you can have a better understanding of how to write resonance structures and will become comfortable with bond-making and bond-breaking steps in organic mechanisms. A paper-on-pencil approach uses active involvement and repetition to teach you to properly push electrons to generate resonance structures and write organic mechanisms with a minimum of memorization. Compatible with any organic chemistry... View Details


There Are No Electrons: Electronics for Earthlings
by Kenn Amdahl (Author)

An off-beat introduction to the workings of electricity for people who wish Richard Brautigan and Kurt Vonnegut had teamed up to explain inductance and capacitance to them. Despite its title, it's not wild ranting pseudo-science to be dismissed by those with brains. Rather, Amdahl maintains that one need not understand quantum physics to grasp how electricity works in practical applications. To understand your toaster or your fax machine, it doesn't really matter whether there are electrons or not, and it's a lot easier and more fun to start with the toaster than with quarks and calculus. The... View Details


Transmission Electron Microscopy: A Textbook for Materials Science (4 Vol set)
by David B. Williams (Author), C. Barry Carter (Author)

This profusely illustrated text on Transmission Electron Microscopy provides the necessary instructions for successful hands-on application of this versatile materials characterization technique. The new edition also includes an extensive collection of questions for the student, providing approximately 800 self-assessment questions and over 400 questions suitable for homework assignment.

View Details


Introduction to the Physics of Electron Emission
by Kevin L. Jensen (Author)

A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology

Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams... View Details


Eddie the Electron
by Melissa Rooney (Author)

Eddie the Electron wants to educate kids everywhere about what it's like to be an electron! He's cute, super enthusiastic, ambitious, smaller than the tip of a pencil and he doesn't want to be confused with a proton or an atom. Feeling stuck with his unexciting fellow electron Erwin, Eddie finds himself with way too much spare time on his hands and longing for adventure outside of the helium balloon where he lives. Just what lengths will he go to be free? There's only one way to find out! Come along with us and learn about life in Eddie's world.

View Details


Scanning Electron Microscopy and X-ray Microanalysis: Third Edition
by Joseph Goldstein (Author), Dale E. Newbury (Author), David C. Joy (Author), Charles E. Lyman (Author), Patrick Echlin (Author), Eric Lifshin (Author), Linda Sawyer (Author), J.R. Michael (Author)

This text provides students as well as practitioners with a comprehensive introduction to the field of scanning electron microscopy (SEM) and X-ray microanalysis. The authors emphasize the practical aspects of the techniques described. Topics discussed include user-controlled functions of scanning electron microscopes and x-ray spectrometers and the use of x-rays for qualitative and quantitative analysis. Separate chapters cover SEM sample preparation methods for hard materials, polymers, and biological specimens. In addition techniques for the elimination of charging in non-conducting... View Details


Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
by S. J. B. Reed (Author)

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with... View Details


Electron Microscopy and Analysis, Third Edition
by Peter J. Goodhew (Author), John Humphreys (Author), Richard Beanland (Author)

Electron Microscopy and Analysis deals with several sophisticated techniques for magnifying images of very small objects by large amounts - especially in a physical science context. It has been ten years since the last edition of Electron Microscopy and Analysis was published and there have been rapid changes in this field since then. The authors have vastly updated their very successful second edition, which is already established as an essential laboratory manual worldwide, and they have incorporated questions and answers in each chapter for ease of learning. Equally as relevant for... View Details


Pushing Electrons: A Guide for Students of Organic Chemistry
by Daniel P. Weeks (Author)

SpartanModel replaces the plastic models used by past generations of organic chemistry students. This set of easy-to-use digital builders allows you to construct and manipulate 3-D molecules of any size or complexity.
View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.